Strong coupling expansion of the t-V model (further results)

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Szymiszewski, M., & Burovski, E. (2015). Strong coupling expansion of the t-V model (further results). In host publication

Published in:
host publication

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
The generalised t-V model [1] of fermions distributed on a chain of L sites with p.b.c.:

$$H = -t \sum_{i=1}^{L} \left(\hat{\phi}_{i}^\dagger \hat{\phi}_{i+1} + \text{h.c.} \right) + \sum_{i=1}^{L} \sum_{m=1}^{p} U_{m} \hat{\phi}_{i+m}^\dagger \hat{\phi}_{i+m}$$

p - interaction range

Away from critical density
- Luttinger liquid
- Highly degenerate ground state
- Interacting "hard rods"

Critical density $Q_{c} = \frac{a}{p+1}$ - $q = 1 - p$
- Mott insulator
- Simple ground state
- "Rods" filling the lattice

The Hamiltonian matrix in new basis:

- [I] Act with V
- [II] Separate
- [III] Ortho-normalise
- [IV] Repeat

$\lambda \ll 1, V$ can be treated as a perturbation [3].

For $Q = \frac{1}{p}$ one trivial phase
For $Q = \frac{1}{p}$ phases can be described in detail
For $Q = \frac{1}{p'}$, etc. number of phases increases rapidly; no simple way of description

Possible further work:
- High precision results for both integrable and non-integrable models
- Strong coupling expansion

Strong coupling expansion of the t-V model

Strong coupling expansion

REFERENCES