Strong coupling expansion of the t-V model

MARcin SzyNisZEwski*1,2, Evgeni Burovski1

1 Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
2 NoW Nano DTC, University of Manchester, Manchester, M13 9PL, UK
*E-mail for corresponding author: mszynisz@gmail.com

1 INTRODUCTION

The generalised t-V model [1] of fermions distributed on a chain of L sites with p.b.c.:

\[H = -t \sum_{i=1}^{L} (\phi_i^a \phi_{i+1}^a + \text{h.c.}) + \sum_{i=1}^{L} \sum_{m=1}^{p} U_m \phi_i^a \phi_{i+m}^a \]

\(p \) - interaction range

Away from critical density

- Luttinger liquid
- Highly degenerate ground state
- Interacting "hard rods"

Critical density \(q_c = \frac{\pi}{p+1} q = 1 - p \)

- Mott insulator
- Simple ground state
- "Rods" filling the lattice

2 THE OBJECTIVE

Spacing: \(p > 1 \)
Non-integrable

Solved only in the 1st order perturbation [1].

Try reaching higher orders and finite system sizes.

Describe critical behaviour.

Spacing: \(p = 1 \)
Integrable

Bethe ansatz approach [2].

Assume:

\[H = H_0 + \lambda V \]

\(\lambda \ll 1, V \) can be treated as a perturbation [3].

\[H_0 = -t \sum_{i=1}^{L} (\phi_i^a \phi_{i+1}^a + \text{h.c.}) \]

Choose states

Act with \(V \)

Ortho-normalise \([1] \)

Repeat

The Hamiltonian matrix in new basis:

SCE step 0

With every SCE step we are increasing the accuracy by two orders in \(\lambda \).

3 STRONG COUPLING EXPANSION

4 RESULTS AND CRITICALITY

Ground state energy formulae for near critical densities

\[\text{Small magnetic flux dependence} \]

Critical parameter \(K \) can be easily calculated

\[K = \frac{\pi \text{sc}(\pi(p+1))}{2L + 4p} + O(t) \]

\(\pi \text{sc}(\pi(p+1)) \) is not satisfied and thus potential has an unusual behaviour.

E.g. ground state [0] \(\rightarrow [1] \)

Possible further work:

High precision results for both integrable and non-integrable models

Strong coupling expansion

Simple way of reaching higher order perturbations numerically & analytically

6 CONCLUSIONS & OUTLOOK

REFERENCES