Strong coupling expansion of the t-V model (further results)

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Szyniszewski, M., & Burovski, E. (2015). Strong coupling expansion of the t-V model (further results). In host publication

Published in:
host publication

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Strong coupling expansion of the t-V model

Marcin Szyniszewski*1, Evgeni Burovski1

1 Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
2 NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK
* E-mail for corresponding author: mszynisz@gmail.com

1 INTRODUCTION
The generalised t-V model [1] of fermions distributed on a chain of L sites with p.b.c.:

\[H = -t \sum_{i=1}^{L} (\phi_i^\dagger \phi_{i+1} + \text{h.c.}) + \sum_{i=1}^{L} \sum_{m=1}^{p} U_{m} \phi_i^\dagger \phi_i^\dagger \phi_{i+m} \phi_{i+m} \]

- Interaction range
- Critical density \(1/(q+1) \)
- Precision up to \(O(q^3) \)
- General results including all values of \(p \)
- Kinetic term becomes:

\[\sum_i (e^{i\phi_i^\dagger} \phi_i + \text{h.c.}) \]

\[K = \frac{\pi \csc ((\pi/p+1)/2L + 4\pi)}{4L(\pi/p+1)} + O(q) \]

2 THE OBJECTIVE
2.1 Spacing: \(p > 1 \)
Non-integrable
Solved only in the 1st order perturbation [1].
Try reaching higher orders and finite system sizes.
Describe critical behaviour.

2.2 Spacing: \(p = 1 \)
Integrable
Bethe ansatz approach [2].

Choose states

I Act with \(V \)

II Separate

III Orth-normalise

IV Repeat

\(\lambda \ll 1, V \) can be treated as a perturbation [3].

The Hamiltonian matrix in new basis:

3 STRONG COUPLING EXPANSION

Example for \(p = 4, q = 1/3 \):

4 RESULTS AND CRITICALITY

Critical parameter \(K \) can be easily calculated

\[K = \frac{\pi \csc ((\pi/p+1)/2L + 4\pi)}{4L(\pi/p+1)} + O(q) \]

5 OTHER PHASES

Other phases are present if

\[U_{m} < (U_{m-1} + U_{m+1})/2 \]

is not satisfied and thus potential has an unusual behaviour.

6 CONCLUSIONS & OUTLOOK

High precision results for both integrable and non-integrable models
Critical parameter \(K \) easily obtained
Simple way of reaching higher order perturbations numerically & analytically

REFERENCES