Lattice Hamiltonian approach to the Schwinger model

K. Cichy1,2, A. Kujawa-Cichy3, M. Szyniszewski4,5

1NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
2Department of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
3Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main, Germany
4Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
5NoWNano DTC, University of Manchester, Manchester, M13 9PL, UK
Outline

1. The Schwinger model on lattice
2. Strong coupling expansion (SCE)
3. Ground state energy
4. Mass gaps
5. Chiral condensate
6. Oscillations of chiral condensate
7. Summary & outlook
The Schwinger model

Hamiltonian of the Schwinger model in the Kogut-Susskind staggered discretization [1,2]:

\[
\mathcal{H} = -\frac{i}{2a} \sum_{n=1}^{M} \left(\phi^+(n) e^{i\theta(n)} \phi(n+1) - \phi^+(n+1) e^{-i\theta(n)} \phi(n) \right)
\]

\[
+ m \sum_{n=1}^{M} (-1)^n \phi^+(n) \phi(n) + \frac{ag^2}{2} \sum_{n=1}^{M} L^2(n)
\]

• \(\phi(n)\) — single-component fermion field on a circle with \(M\) sites
• \(\theta(n) = agA_1(n)\) — gauge field variable related to the Abelian vector potential
• \(L(n) = E(n)/g\) — variable related directly to the electric field
• \(m\) — fermion mass
• \(a\) — lattice spacing
• \(g\) — gauge coupling constant

The Schwinger model

Hamiltonian of the Schwinger model in lattice representation after the Jordan-Wigner transformation [3]:

$$\mathcal{H}_{JW} = -\frac{1}{2a} \sum_{n=1}^{M} \left(\sigma^+(n)e^{i\theta(n)}\sigma^-(n+1) + \text{h.c.} \right)$$

$$+ \frac{m}{2} \sum_{n=1}^{M} \left(1 + (-1)^n\sigma^3(n) \right) + \frac{ag^2}{2} \sum_{n=1}^{M} L^2(n)$$

- $\sigma^i(n)$ — Pauli matrices residing on the sites
- $L(n)$ — gauge field excitations defined between sites n and $n+1$
- $e^{\pm i\theta(n)}$ — ladder operators for gauge field excitations

Spin matrices $\sigma^3(n), \sigma^\pm(n)$

$\sigma^3(n) = \pm 1$

Gauge field excitations $L(n), e^{i\theta(n)}$

$L(n) = 0, \pm 1, \pm 2, \ldots$

Strong coupling expansion on the Schwinger model

Rewrite the Hamiltonian in a dimensionless form:

\[W = \frac{2}{ag^2} \mathcal{H}_{JW} = W_0 + xV \]

\[\sum_{n=1}^{M} \left(\sigma_n^+ e^{i\theta(n)} \sigma_{n+1}^- + \text{h.c.} \right) \]

\[\frac{m}{ag^2} \sum_{n=1}^{M} \left(1 + (-1)^n \sigma_n^3 \right) + \sum_{n=1}^{M} L^2(n) \]

• If \(x \equiv \beta = \frac{1}{a^2 g^2} \) is small, we can treat \(W_0 \) as an unperturbed Hamiltonian and \(V \) as a perturbation.

• SCE creates the truncated basis of \(W \)

Start with ground state of \(W_0, |0\rangle \)

Create states by acting with \(V \)

Separate states according to their unperturbed energy

Ortho-normalize

Include in the truncated basis

\[|0\rangle \rightarrow V|0\rangle \]

\[|\tilde{1}\rangle \rightarrow |1\rangle \]

\[|\tilde{1}'\rangle \rightarrow |1'\rangle \]

\[\left\{ |0\rangle, |1\rangle \right\} \]
Observables

- Ground state energy:
 \[E_0 = \frac{\omega_0}{2Mx} \quad \text{as } a \to 0, M \to \infty, \quad \frac{1}{\pi} \]

- Scalar mass gap \((m = 0)\):
 \[\frac{M_S}{g} = \frac{\omega_1 - \omega_0}{2\sqrt{x}} \quad \text{as } a \to 0, M \to \infty, \quad \frac{2}{\sqrt{\pi}} \]

- Vector mass gap \((m = 0)\):
 \[\frac{M_V}{g} = \frac{\omega_0^V - \omega_0}{2\sqrt{x}} \quad \text{as } a \to 0, M \to \infty, \quad \frac{1}{\sqrt{\pi}} \]

- Chiral condensate (chiral order parameter):
 \[\frac{\langle \bar{\psi} \psi \rangle_0}{g} = \frac{\sqrt{x}}{2M} \langle 0 | \sum_{n=1}^{M} (-1)^n \sigma^3(n) | 0 \rangle \]
Eigenvalue flow with the order of strong coupling expansion, N

Example for: $M = 8$, $x \equiv \beta = 2500$

Lattice Hamiltonian approach to the Schwinger model saturated!
Ground state energy

\[E_0 = \frac{\omega_0}{2Mx} \quad m = 0 \]
Scalar mass gap

\[\frac{M_S}{g} = \frac{\omega_1 - \omega_0}{2\sqrt{x}} \]

\(m = 0 \)
Vector mass gap

\[\frac{M_V}{g} = \frac{\omega_0^V - \omega_0}{2\sqrt{x}} \]

\(m = 0 \)
Chiral condensate

Lattice Hamiltonian approach to the Schwinger model

$m = 0$
Comparison with MPS results

- Ground state energy and mass gaps – massless model:

<table>
<thead>
<tr>
<th>Observable</th>
<th>SCE+ED</th>
<th>MPS [4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_0</td>
<td>-0.3183098860(2)</td>
<td>-0.318338(24)</td>
</tr>
<tr>
<td>M_S/g</td>
<td>1.12837916711(1)</td>
<td>1.1279(12)</td>
</tr>
<tr>
<td>M_V/g</td>
<td>0.5641895845(9)</td>
<td>0.56421(9)</td>
</tr>
</tbody>
</table>

- Chiral condensate - massless case:

<table>
<thead>
<tr>
<th>x</th>
<th>SCE+ED</th>
<th>MPS [5]</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-0.189878819389204</td>
<td>-0.19025255847009401</td>
<td>0.00037</td>
</tr>
<tr>
<td>25</td>
<td>-0.187519020840406</td>
<td>-0.18796879340592226</td>
<td>0.00045</td>
</tr>
<tr>
<td>30</td>
<td>-0.185829589660617</td>
<td>-0.18620821935803569</td>
<td>0.00038</td>
</tr>
<tr>
<td>cont.</td>
<td>-0.16(1)</td>
<td>-0.159930(8)</td>
<td></td>
</tr>
</tbody>
</table>

- C.c. - massive $m = 0.125$ (this is after subtracting log divergence [6]):

<table>
<thead>
<tr>
<th>x</th>
<th>SCE+ED</th>
<th>MPS [5]</th>
</tr>
</thead>
<tbody>
<tr>
<td>cont.</td>
<td>-0.091(5)</td>
<td>-0.092023(4)</td>
</tr>
</tbody>
</table>

Oscillations of chiral condensate while changing the SCE order N

$Lattice Hamiltonian approach to the Schwinger model$
Oscillations: fitting ansatz

- We have chosen the following fitting function:

\[\Sigma(N) = \Sigma(N \to \infty) + a \left(\frac{b}{N^3} + e^{-\alpha N} \right) \sin \left(\frac{2\pi}{T} N + \varphi \right) \]

for huge \(x \)

for small \(x \)

- If we can guess the fitting ansatz correctly, we can use small number of points to approximate saturated values, \(\Sigma(N \to \infty) \).
Oscillations: fitting parameters

Phase and period:
- \(T = M \)
- \(\phi = \frac{2\pi}{M} \)
Fitting function: \(\Sigma(N) = \Sigma(N \to \infty) + a \left(\frac{b}{N^3} + e^{-\alpha N} \right) \sin \left(\frac{2\pi}{T} N + \varphi \right) \)
Fitting function: \(\Sigma(N) = \Sigma(N \to \infty) + a \left(\frac{b}{N^3} + e^{-\alpha N} \right) \sin \left(\frac{2\pi}{T} N + \varphi \right) \)

- High \(x \): errors due to huge oscillations
- \(\Sigma(N \to \infty) \) seems to go to zero – because of huge finite volume effects.
Oscillations of the chiral condensate and flux loops

- Every time $N = k M$, we reach the next flux loop in the system
- Period must reflect presence of the flux loops

Final fitting ansatz:

$$
\Sigma(N, M, x) = \Sigma(N \to \infty, M, x) + \left(A(M) \frac{\sqrt{x}}{N^3} + B(M, x)e^{-\alpha(M, x)N} \right) \sin \frac{2\pi}{M} (N + 1)
$$

Example:

- $x = 10^{10}$
- $M = 24$
Summary and outlook

Lattice Hamiltonian results for massless Schwinger model:
- Almost machine precision for GS energy and mass gaps
- Chiral condensate, but we have a problem with FVE

Future:
- Chiral condensate oscillations – further investigation
- How to deal with finite volume effects in the chiral condensate?
- Fitting functions?
- Damped harmonic oscillator for small χ?
Thanks for listening!

Acknowledgements:

• Co-authors:
 - dr Krzysztof Cichy
 - dr Agnieszka Kujawa-Cichy

• I’m funded by:
 - EPSRC
 - Lancaster University
 - Manchester 1824
 - NowNano