Generalised t-V model in one dimension

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
The generalised t-V model [2] of fermions distributed on a chain of L sites:
\[\hat{H} = -t \sum_{i=1}^{L} (c_i^\dagger c_{i+1} + \text{h.c.}) + \sum_{i=1}^{L} \sum_{m=1}^{p} U_m \tilde{c}_i \tilde{c}_{i+m} \]

Kinetic energy, i.e. the hopping term, is much smaller than the potential:
\(t \ll U_m \).

Potential energy makes sure the particles are not closer than \(p \) sites; otherwise energy cost is
\(U_m \). Example for \(p = 2 \):

\[E_{\text{pot}} = 0 \quad \text{if} \quad U_m > U_{m+1} \]

Depending on fermion density \(Q = N/L \) we have different phases:
- Critical density \(Q_c = \frac{2}{p+1} \) \(q = 1 \ldots p \)
 - Mott insulator
 - Simple unperturbed ground state
- Away from critical density
 - Luttinger liquid
 - Highly degenerate ground state of \(\hat{H}_0 \)

Using SCE for near-critical densities, the Hamiltonian is small enough to calculate approximate solution to a very high precision.

Example: \(p = 3 \), \(Q = 1/4 \), step "2" in SCE:
\[\hat{H} = \begin{pmatrix}
-\sqrt{7/2} t & u_1 & -\sqrt{6t} & 0 & 0 \\
-\sqrt{7/2} t & u_3 & -\sqrt{6t} & u_2 & 0 \\
0 & -\sqrt{6t} & u_1 & u_2 & u_4 \\
0 & 0 & -\sqrt{6t} & u_3 & 0 \\
0 & 0 & 0 & -\sqrt{6t} & u_3
\end{pmatrix} \]

This simple 5x5 Hamiltonian gives the ground state energy of the system up to order \((t/U_3)^2 \).

The generalised t-V model \(\hat{H} \) is constructed using SCF. The method starts similarly to the perturbation theory. Assume:
\[\hat{H} = \hat{H}_0 + \lambda \hat{V} \]
where \(\lambda \ll 1 \), so we can treat \(\hat{V} \) as perturbation. Eigenstates \(\{ \alpha_n \} \) of \(\hat{H}_0 \) are known. Now, we want to create a new truncated basis \(\{ \beta_n \} \) using \(\{ \alpha_n \} \):
- Include in your basis the desired subspace of unperturbed states that you want to approximate.
- They are of step “0” in SCE.
 - Example: using state \(|1\uparrow 1\uparrow 1\uparrow \rangle \).
- Act with \(\hat{V} \) on states from previous SCE step (“n”), creating set of states \(S \).
- States in \(S \) are linear combinations of the unperturbed Hamiltonian eigenstates.
 - Example: \(|1\uparrow 1\uparrow 1\uparrow \rangle + |1\uparrow 1\uparrow 1\uparrow \rangle \).
- Separate every state in \(S \) according to their unperturbed energy.
 - Example: \(|1\uparrow 1\uparrow 1\uparrow \rangle \).
- Orthonormalise the states in set \(S \), so they would be orthonormal to each other and the basis.
 - Include them in the basis.
- They are of step “0” in SCE.
 - Example The basis is now: \(|1\uparrow 1\uparrow 1\uparrow \rangle, |\uparrow \uparrow \rangle, |\uparrow \uparrow \rangle \).
- Repeat from step II until you achieve desired SCE step.

All the information about the desired states (e.g. ground states) will be encoded in the truncated \(\hat{H} \) in the new basis [4,5].