Generalised t-V model in one dimension

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
The generalised t-V model [2] of fermions distributed on a chain of L sites:

$$\mathcal{H} = -t \sum_{i=1}^{L} \left(\hat{c}_{i}^{\dagger} \hat{c}_{i+1} + \text{h.c.} \right) + \sum_{i=1}^{L} \sum_{m=1}^{p} U_{m} \hat{n}_{i+m}$$

The hopping term, i.e. the kinetic energy, is much smaller than the potential.$t \ll U_{m}$.

Kinetic energy makes sure the particles are not closer than p sites; otherwise energy cost is U_{m}. Example for $p = 2$:

<table>
<thead>
<tr>
<th>E_{pot}</th>
<th>U_{1}</th>
<th>U_{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{\text{pot}} = 0$</td>
<td>$U_{1} > U_{2}$</td>
<td>$U_{2} > U_{1}$</td>
</tr>
</tbody>
</table>

Depending on fermion density $Q = N/L$ we have different phases:

Critical density $Q_{C} = \frac{1}{p+1} q = 1$.

- **Mott insulator**
- **Simple unperturbed ground state**

Avoiding from critical density

- **Luttinger liquid**
- **Highly degenerate ground state of H_{B}**

Using SCE for near-critical densities, the Hamiltonian is small in the new basis of the ground state energy of the system up to order $(t/U)^{2}$.

Example: $p = 3$, $Q = 1/4$, step “2^{nd}” in SCE:

$$\mathcal{H} = \begin{pmatrix} -\sqrt{2/2} t & u_{a} & -\sqrt{4t} & -2t & \cdots \\
-\sqrt{4t} & u_{a} & -\sqrt{4t} & u_{a} & \cdots \\
-2t & -\sqrt{4t} & \cdots & \cdots & u_{a} \\
\cdots & \cdots & \cdots & \cdots & \cdots \end{pmatrix}$$

This simple 5×5 Hamiltonian gives the ground state energy of the system up to order $(t/U)^{2}$.

Below we present results for a system with $p = 3$. Similar results have been obtained for $p = 1$ (integrable) and $p = 2$ systems. $Q_{C} = 1/4$. This is step “3^{rd}” in SCE.

Ground state energy:

$$E_{0} = \frac{-t}{2U} \left[\frac{1}{3} U_{0}^2 \frac{t}{2U} \right]^{4} + \frac{4U_{0}^2}{5U} + \frac{56U_{0}^2}{25U} + \frac{512U_{0}^2}{125U} + \cdots + \frac{256}{39} \left(\frac{t}{2U} \right)^{6}$$

Current density:

$$\frac{J}{L} = \frac{t}{2U} \left(\frac{1}{3} U_{0}^2 \frac{t}{2U} \right) \frac{1}{4} t^{4} + \frac{4U_{0}^2}{5U} + \frac{56U_{0}^2}{25U} + \frac{512U_{0}^2}{125U} + \cdots + \frac{256}{39} \left(\frac{t}{2U} \right)^{6}$$

Density-density correlations:

$\langle \hat{n}_{i} \hat{n}_{i+3} \rangle$ were also obtained. Leading order is cyclic in δ, which is consistent with expectations.

Leading order of t/U

$$\langle \hat{n}_{i} \hat{n}_{i+3} \rangle \sim \frac{1}{2} \left(\frac{t}{U} \right)^{2}$$

Obtained accuracy was $O(t^{6}) + O(t^{8})$.

Summary:

- High precision results for both integrable and non-integrable models in Mott insulating phases.
- Results are fully consistent with other works [1,2,3].

Further work:
- Phase transition investigation
- Temperature dependence
- More observables
- Time dependence

REFERENCES