PORTABLE FIBER-BASED FLUORESCENCE SENSOR FOR ONLINE ASSESSMENT OF TRANSFORMER OIL AGEING

Xiao YI, Chen CHEN, Zhongdong WANG, Krikor OZANYAN
School of Electrical and Electronic Engineering, University of Manchester - UK
zhongdong.wang@manchester.ac.uk / k.ozanyan@manchester.ac.uk

Darren JONES
Electricity North West - UK
darren.jones@enwl.co.uk

ABSTRACT
In smart grid, the penetration of electric vehicles would exacerbate the thermal ageing of transformer oil in distribution transformers. This would threaten the reliable and secure operation of distribution transformers and requires timely monitoring for oil conditions in distribution transformers. This work applies fluorescence spectroscopy to evaluate the ageing status of transformer oil. The fluorescence spectra were measured for the transformer oil samples thermally aged in laboratory. It is found that the ratio of the two peaks in fluorescence spectrum is well in line with traditional ageing parameters, including colour index and total acid number, which makes it feasible to apply the portable fibre-based fluorescent probe system in the online assessment of the ageing status of transformer oils.

INTRODUCTION
The development of smart grids raises attention to the insulation degradation of distribution transformers, because the increasing emergences of electric vehicles would elevate the thermal stress and worsen the thermal ageing of transformer oil [1-3]. This would threaten the reliable and secure operation of distribution transformers, increase the complexity of asset management for the large number of distribution transformers and require proper condition monitoring approaches for distribution transformers.

Fluorescence spectrum is sensitively related to the electronic state of the molecules; therefore, it can indirectly indicate the molecular changes during oil ageing process [4-12]. Recent developments in semiconductor diode sources bring down the cost of laser diodes and avail the deployment of cheap and portable fluorescence spectrum instrument [10-12].

This work applies fluorescence spectroscopy and fingerprinting to assess the ageing status of transformer oil, as a part of the goal towards the development of a reliable, cost-effective and field-deployable oil condition monitor for transformers. The fluorescence spectra of the transformer oil samples were measured after the samples were thermally aged in laboratory. It is found that the fluorescence spectrum characteristics are well correlated with traditional ageing parameters, including colour index and total acid number, which makes it feasible to apply this portable fibre-based fluorescent probe system for the ageing assessment of transformer oils.

EXPERIMENTAL
Nynas 10GBN, a naturally inhibited mineral oil, was subjected to the laboratory thermal ageing experiment which is a widely used approach to estimate the loss of life of the insulation. The samples were aged in an air circulating oven at 115°C. In order to investigate the catalytic effects of copper, copper strips were added into some sample vials (to give a surface area of 9.6 cm² per 500 ml) before the ageing experiment was conducted. To study the oxidation effect to thermal ageing, some sample vials were sealed by caps and the rest were left open. Separate 500 ml samples were aged for each specified ageing time. After the ageing experiment finished, Lovibond PFX 880 Tintometer was used to measure the colour index according to ASTM D1500 scale [13]. The cuvette for colour index measurement has a 33 mm light path. In addition, Metrohm 848 Titrino plus was used to measure the total acid number of the samples. It was determined by titration of 5 g oil sample with potassium hydroxide (KOH) solution.

Fluorescence Measurement
The hardware of the fluorescence spectrum instrument is shown in Figure 1. The 5 mW GaN based laser diode generates an excitation light with the wavelength of 404 nm. The fibreoptic is connected to the laser diode to transmit the light. It consists of a bundle of seven fibre strands: six 400 µm illumination fibres surrounding one 400 µm reading fibre. The spectrometer measures the intensities of fluorescent light at different wavelengths and transmits the data to the computer.

Figure 1 Fluorescence spectrum instrument
Disposable cuvettes are used for the measurement in case of contaminations between tests. The cuvettes are made from polystyrene and suitable for light from 340 nm-800 nm. The dimension of the cuvettes is 10 mm×10 mm×45 mm. To represent the in-situ conditions, the tip of fiberoptic was immersed into the oil samples. In preliminary tests, influences of moisture, particle and temperature on spectrum were investigated. It was found that added moisture (up to 50 ppm), cellulose and copper particles (up to 150000 particles with size larger than 5 μm per 100 ml) and temperature (up to 80°C) did not change the shape of the spectrum. The spectrum shape is only sensitive to the oil ageing status.

Before fluorescence spectrum measurement, the cuvette with oil sample was vacuumed for 1 minute to remove the bubbles introduced in the sample injection which might influence the spectrum. Since the sensor tip was immersed into the sample, to prevent contamination to the oil sample, the sensor tip was carefully cleaned with fibreless tissues before each measurement.

FLUORESCENCE SPECTRA OF AGED SAMPLES

The samples were aged for various days under four conditions, including unsealed ageing without copper, unsealed ageing with copper, sealed ageing without copper and sealed ageing with copper, respectively. After the thermal ageing test, their fluorescence spectra were measured and shown in Figure 2.

As can be seen, the typical spectrum is composed of two peaks at 445 nm and 490 nm respectively for transformer oil samples thermally aged. When thermal ageing occurs, the spectrum intensity reduces significantly with the ageing time; especially the peak at 445 nm gradually disappears.

The colours for each individual sample are also shown and the colour change is well in line with the spectrum change: the darker the colour, the smaller the spectrum intensity and the more subtle the first peak at 445 nm.

CORRELATION WITH COLOR INDEX AND TOTAL ACID NUMBER

Since during ageing, there is a loss of the first peak at 445 nm when compared to the second peak at 490 nm in the spectrum intensity (I), it might be possible using this peak...
As can be seen in Figure 3, the ASTM colour scale shows a good exponential relationship with the peak ratio of spectrum, with a determination coefficient \(R^2\) of 0.97. The correlation between peak ratio \(PR\) and the colour index \(CI\) can be written as:

\[
PR = 0.82 + 0.27 \times \exp(0.44 \times CI)
\]

The goodness of fitting of colour index and total acid number with the peak ratio in spectrum denotes that the correlation between peak ratio \(PR\) and the total acid number \(TAN\) can be written as:

\[
PR = 0.91 + 9.41 \times TAN
\]

As shown in Figure 4, the total acid number shows a good linear relationship with the peak ratio of spectrum, with a determination coefficient \(R^2\) of 0.99. The correlation between peak ratio \(PR\) and the total acid number \(TAN\) can be written as:

\[
PR = 0.91 + 9.41 \times TAN
\]

The good correlation of peak ratio with colour index and total acid number indicates that peak ratio could be an effective ageing indicator.

Various oil types might behave differently during ageing process. Consequently, the correlation of fluorescence spectral feature with colour index and total acid number might be different, but they can be deduced for each type of oil after laboratory accelerated ageing test was carried for each oil type, so that a fluorescence spectroscopy fingerprinting library can be established and used for the ageing assessment for various types of transformer oils.

As shown in Figure 5, the change of peak ratio with ageing time for various ageing conditions shows that for aged 10GBN, peak ratio of spectrum larger than 2.3 corresponds to total acid number over 0.15 mg KOH/g; when the peak ratio larger than 3.7 corresponds to total acid number higher than 0.30 mg KOH/g.

Due to different oil properties (original colour, inhibited or not, etc), various oil types might behave differently during ageing process. Consequently, the correlation of fluorescence spectral feature with colour index and total acid number might be different, but they can be deduced for each type of oil after laboratory accelerated ageing test was carried for each oil type, so that a fluorescence spectroscopy fingerprinting library can be established and used for the ageing assessment for various types of transformer oils.
sealed condition, the ageing rate is also obvious, which might be attributed to water which catalyzes the ageing [16], because in sealed ageing, the water generated cannot be evaporated and it will further exacerbate the ageing.

CONCLUSIONS

In this work, the fluorescence spectroscopy using a low-cost 404 nm fibre-based GaN semiconductor laser sensor was applied to assess the ageing status of transformer oil thermally aged in laboratory.

It is found that peak ratio (ratio of intensity at 490 nm and 445 nm) of the fluorescence spectrum has good quantitative correlations with traditional ageing indicators, such as colour index and total acid number, which indicates that fluorescence spectrum measurement could be an effective approach for oil ageing assessment. In addition, fluorescence spectrometer is more field-deployable than colour tintometer and acidity titration system. Consequently, the fluorescence spectroscopy together with fingerprinting, as a cost-effective online approach, can effectively substitute the colour index and total acid number measurements usually conducted off line in laboratories.

Acknowledgments

This research project is funded by the Knowledge Transfer Account (KTA) funding of Engineering and Physical Sciences Research Council, UK and Electricity North West, UK under the frame of OFGEM-IFI.