Integrating cochlear dead regions into the hearing aid fitting process.

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Phonak Focus

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 03. Oct. 2019
Integrating cochlear dead region diagnosis into the hearing instrument fitting process

Kevin J. Munro, PhD
Reader in Audiology,
School of Psychological Sciences, University of Manchester, UK

Introduction

It is well known that sensory hearing impairment is accompanied by supra-threshold deficits such as degraded frequency and temporal resolution. Until now, there have been few hearing instrument fitting rationales that have relied on these supra-threshold deficits to determine the optimal parameters of a particular hearing instrument fitting. However, recent research suggests that procedures which measure the extent of cochlear dead regions might influence aspects of the optimal prescribed frequency-gain characteristic. Individuals with a cochlear dead region may have different frequency-gain requirements than those with no dead region. New or revised fitting rationales may include an optional formula that can be used when there is evidence for cochlear dead regions (Dillon, 2006). Diagnosing the presence and the extent of a dead region may have important clinical implications for counselling and hearing instrument provision.
Readers who would like a more detailed account of the concepts, diagnosis and clinical implications of cochlear dead regions are referred to the comprehensive articles by Moore (2001, 2004).

1. **What is a cochlear dead region?**

The term 'cochlear dead region' (DR) first appeared in the literature about ten years ago (Moore et al., 1996) although the concept of 'gaps' or 'holes' in hearing has been around for a considerable period of time (e.g., Troland, 1929; Gravendeel and Plomp, 1960). Some hearing-impaired individuals have regions of inner hair cells (IHCs) and/or associated neurones that function so poorly, if at all, that they can be considered dead i.e., the mechanical vibration at a particular region of the basilar membrane cannot be transduced into an electrical signal in the auditory nerve (see Figure 1). However, at high presentation levels, a signal producing its maximum vibration in a DR may be detected as a result of a spread of excitation to adjacent regions of the basilar membrane where the IHCs and/or neurones are functioning. This is known as 'off-frequency' or 'off-place' listening. Clinical procedures for the diagnosis of DRs are based on the identification of off-frequency listening. Using an analogy, a DR is somewhat akin to having a piano with a group of broken strings. A heavy hit on the keys may cause adjacent strings to vibrate. In our case, a signal that produces maximum vibration within a DR may still be detected but there may be implications for the way the signal is perceived. This may impact on patient counselling, selection of gain–frequency response, and hearing aid benefit.

There will be some occasions when basilar membrane excitation adjacent to the DR is insufficient for off-frequency detection. For example, take an individual who has non-functioning high-frequency IHCs and/or neurones. Initially, a tone falling in the DR will be detected because of good hearing sensitivity.
More recently, Amatuzzi et al. (2001) showed that three newborn babies who had been in a neonatal intensive care unit, and had failed a hearing screen using the auditory brainstem response, had a loss of IHCs without accompanying OHC damage when examined histologically\(^1\) (All footnotes are provided on page 15). A further four babies who failed the screen had abnormalities to both IHCs and OHCs. This finding is consistent with a number of animal studies that have reported selective damage to IHCs. Studies using the chinchilla, Harrison (2001) reported extensive IHC degeneration and normal OHCs as a result of both mild chronic hypoxia or treatment with cisplatin, an oto-toxic anticancer drug. In newborn rats, Mazurek et al. (2003) have also shown that IHCs are more susceptible to hypoxia/ischemia than OHCs. The mechanism underlying the higher susceptibility of IHCs is not well understood but the higher expression of glutamate receptors, the moderate expression of plasma membrane calcium ATPase, the lower glycogen content, and the lower content of mitochondria may all be contributing factors. In summary, there is evidence that cochlear DRs can occur in adults and children with an acquired or congenital hearing impairment.

3. Is there an audiometric pattern associated with dead regions?

No, there is no definitive audiometric pattern associated with DRs but there are certain audiometric features that are more likely to be present. If the OHCs are damaged to the extent that the ‘active’ process is completely absent, there will be a maximum hearing-impairment of around 60 dB HL. It is also known that the maximum hearing impairment due to IHC damage, before they cease to function altogether, is of the order of 20–30 dB. Therefore:

1. a mild or moderate sensory hearing-impairment may be due to a combination of OHC and IHC damage,
2. a severe sensory hearing-impairment is probably due to a combination of OHC and IHC damage, and
3. a profound hearing-impairment is probably due to total OHC and IHC damage.

The spread of excitation along the basilar membrane usually falls rapidly (at the more apical low frequencies) after it has reached its maximum vibration, as illustrated in Figure 2. If a high frequency tone that falls within a region of non-functioning IHCs is to be detected at a low frequency place on the basilar membrane, then hearing sensitivity at the low frequency place would need to be relatively good because of the rather rapid reduction in excitation. This means that relatively steep audiometric configurations are quite likely to be associated with a DR. However, some hearing-impaired ears do not show a rapid reduction in vibration as the wave of excitation travels along the basilar membrane towards the low frequencies. There are reports in the literature of more gentle sloping audiometric configurations being associated with a DR (e.g., Glasberg and Moore, 1986). This may explain why Vinay and Moore (2007b) found that steepness of the audiometric slope was not a reliable predictor of DRs (see section 5). It is not clear if this also applies to cases of congenital hearing impairment where, for example, there may be abnormal patterns of vibration on the basilar membrane due to a malformation within the cochlea. Caution should be used when relying on the audiometric configuration to raise suspicion of DRs in any individual, especially those with a congenital hearing impairment.

4. Is there a clinical test that can be used to identify dead regions?

Since a tone that falls within a DR may be detected at a different place on the basilar membrane, DRs are assumed to occur if a hearing-impaired listener can be shown to be using off-place listening. Two masking techniques have been used for the identification of off-place listening: psychophysical tuning curves (PTCs) and the threshold equalizing noise (TEN) test. Both are based on the assumption that a signal falling within a DR may be detected at a place on the basilar membrane where function is better, despite the amount of vibration being lower than at the peak frequency. In individuals without a DR, a noise at a remote place on the basilar membrane will have little masking effect on the hearing threshold. However, if a DR is present and the tone is being detected at the remote place, the threshold will be elevated by the masker.

The TEN is a broadband noise and it has been developed specifically for assessment of DRs within a clinical environment. The test is based on the measurement of tone thresholds in the presence of ipsilateral TEN. The original version of the TEN produces equal masked thresholds, in decibels sound pressure level, between 0.25

Figure 2
The pattern of activity builds up gradually with distance as it moves from left to right (basal high frequency to apical low frequency) and decays rapidly beyond the point of maximum displacement. Source: Moore (1998).
and 10 kHz (Moore et al., 2000). A revised version of the test produces equal masked thresholds, in decibels hearing level, between 0.5 and 4 kHz, and this makes it much easier to use in clinical practice (Moore et al., 2004). It is only the more recent version of the TEN test that will be discussed here. Since the TEN masker is not yet a standard option on current clinical audiometers, the TEN has been recorded onto CD². The test requires a two channel audiometer: one channel controls the tones (which may be generated by the audiometer or routed from the CD) and the second channel controls the TEN (which is delivered to the same ear). Normal practice is to measure masked thresholds in the presence of the TEN at the frequencies that are likely to represent the transition from a healthy region to a DR (usually where there is a rapid change in threshold between two adjacent thresholds). Masked thresholds are measured using standard audiometric procedures although Moore et al. (2004) recommends using an ascending step size of 2 dB. Cairns et al. (In Press) have shown that smaller step sizes (down 4 dB and up 2 dB) can improve the reliability of the test. Masked thresholds usually only require one level of TEN which would typically be around 80 dB/ERB³ (and at least 10 dB above the absolute threshold at the test frequency). A high presentation level is required so that the TEN masker is effective and also to reduce the possibility of labelling a sick region as a DR. Figure 3 summarises TEN test interpretation. If the threshold measured in the TEN is 10 dB or more above the threshold in quiet, and at least 10 dB above the level of the TEN, this is taken as indicative of a DR at the signal frequency (Moore et al., 2000). Meeting the first criterion demonstrates that the TEN masker was effective: meeting the second criterion demonstrates that TEN had a greater masker effect than would be expected from on-frequency listening. If the criteria are met for a DR all (or most) test frequencies then the results should be treated with caution as greater susceptibility to masking can be produced by poor processing efficiency in conditions such as auditory neuropathy (Vinay and Moore, 2007a).

Figure 4 shows the hypothetical hearing thresholds for two listeners who are being assessed for a hearing instrument. The audiologist decided to use the TEN test to check for the presence of a DR at the higher frequencies; it is possible that pure tones at 1.5 kHz and higher were detected around the 1 kHz place on the basilar membrane. The TEN was presented at a level of 90 dB/ERB and the audiologist measured the masked hearing threshold at 1, 1.5 and 2 kHz. The pure tone thresholds should be elevated to around 90 dB HL if there is no DR. In order to meet the criteria for a DR the masked thresholds should be elevated to 100 dB HL, or higher. For the individual on the left, the masked thresholds are 90 dB HL at 1, 1.5 and 2 kHz, respectively. Thus, the criteria for a DR are not met at any of these frequencies. For the individual on the
A small number of studies have investigated the test-retest reliability of the TEN test. Cairns et al. (In Press) carried out a retest within seven days for a group of hearing-impaired adults and a group of hearing-impaired teenagers. A total of 3 (7.5%) and 2 (8%) ears changed category, respectively. Munro et al. (2005) reported that 2 (7.1%) ears of the same subject (that just met the DR criteria) changed category on retest after a period of 12 months. The majority of ears that changed category on retest in both of these studies just met the DR criteria at an isolated frequency. An immediate retest is advisable in such cases. Practical applications and useful guidelines for when and how to use the TEN test are provided by Moore (2001, 2002a, 2004).

For a given amount of energy, a broadband noise such as TEN is perceived louder than a narrowband of noise because it is spread over a number of critical bands. Many studies have reported that some listeners find the TEN to be uncomfortably loud. The loudness can be lowered by reducing the bandwidth of the TEN. The original version of the TEN was band limited between 125-10,000 Hz. Markessis et al. (2006) high-pass filtered the original TEN at 0.5 and 1 kHz with some success. The current version of the TEN is band limited between 354 and 6500 Hz. In theory, there is no reason why narrower bands of noise could not be used. For example, if the edge frequency of a DR is thought to be around 2 kHz, then tones that fall within a DR will be masked by noise centred around 2 kHz. However, this would require a great many separate bands of noise, which potentially complicates the clinical procedure (and it would be hard to know in advance where to centre a narrow band of noise). In any case, this option is not currently available for clinical practice.

The TEN test serves as a useful tool for detecting DRs, but it does not precisely define the edge frequency, although its precision could be improved somewhat by providing...
tones at finely spaced frequencies. A solution is to identify the edge frequency using psychophysical tuning curves (PTCs). A PTC shows the level of a narrowband masker required to mask a low level signal, plotted as a function of masker centre frequency. The lowest masker level required to mask the signal defines the tip of the PTC: this is the frequency at which the masker is most effective. In normal hearing listeners the tip of the PTC usually lies close to the signal frequency (Moore, 1978; Moore and Alcantara, 2001). For hearing-impaired listeners without a DR, the tip of the PTC is usually broader but still lies close to the signal frequency (Moore, 1998). In cases where the signal frequency lies within a DR, the tip will be shifted away from the signal frequency (Moore, 1998). The tip of the PTC will be shifted to the frequency which corresponds to the place on the basilar membrane where the signal is being detected. This identifies the edge of the DR. When the tip of the PTC is shifted towards a lower frequency, this indicates a high frequency DR. Conversely, when the tip is shifted to a higher frequency this indicates a low frequency DR. Examples of PTCs are shown in Figure 5.

Since the tip of the PTC corresponds to the edge of the DR, PTCs potentially provide a more accurate method for determining the frequency limits of a DR. Traditional PTC measurement procedures are time consuming to administer, as each PTC requires measurement of many masked thresholds in order to define the frequency at the tip. Therefore, traditional procedures do not lend themselves to clinical situations or for use with listeners who have limited spans of attention such as young children. In addition, traditional PTCs can be affected by the detection of beats and combination tones (Kluk and Moore, 2004, 2005). Recent work on a fast method for measuring a PTC means that it might soon be possible to use these in clinical practice. Several authors have used a fast method for determining PTCs, based on the use of a masker whose centre frequency sweeps across the frequency range using a Békésy-type tracking procedure. Zwicker (1974) used the technique with normal hearing listeners and Summers et al. (2003) used it with hearing-impaired listeners, some of whom had a DR. However, Sek et al. (2005) were the first to systematically evaluate parameters such as rate of change of masker level in order to optimise the procedure for the assessment of DRs in clinical practice. Sek and colleagues demonstrated that the fast-PTC method produces similar results to the traditional PTC measurement procedures. Unfortunately, the approach used by Sek et al. cannot be easily implemented in the clinic because audiometers will not allow an externally generated masker to be controlled adaptively by the listener. In order to make the adaptive technique available clinically, we have implemented the fast-PTC method on a PC fitted with a high quality sound card. The software programme was developed in our laboratory by Richard Baker for use with a Kamplex KC 35 clinical audiometer fitted with TDH 39 headphones. The PC was additionally equipped with an

![Figure 5](https://example.com/figure5.png)

Figure 5
Examples of psychophysical tuning curves. The right panel is for a listener with a high frequency sensory hearing impairment. The filled symbols show the target and the open symbols show the masker. In these examples, the tip of the tuning curve occurs at the same frequency as the target. The left panel shows a single tuning curve of a listener with a high frequency dead region. The 1.5 kHz signal is most easily masked with a masker around 1 kHz. Source: Moore (2001).
that the edge frequencies obtained from the PTCs were similar and usually close to the values estimated from the TEN test. This is reassuring because Summers et al. (2003) did not find close agreement between PTCs and the results of the TEN test. In 18 ears with steeply sloping high-frequency hearing impairment, there was agreement in 10 (56%) ears only. Summers and colleagues argued that that the PTCs were more reliable than the TEN test. However, Moore (2004) and Kluk and Moore (2005) argued that some of the PTCs may have been influenced by factors such as beats and combination tones.

5. What do we know about the prevalence of cochlear dead regions?

Most studies reviewed in this section have used the TEN test to identify off-frequency listening. Prevalence data for cochlear DRS in adults with a sensory hearing-impairment have been provided by Vinay and Moore (2007b). They assessed 317 adults (592 ears) who attended an audiology department, generally for the fitting of a hearing aid. A total of 177 (54%) adults or 233 (42%) ears met the criteria for a DR at one or more frequency. It was rare to find evidence for a DR when the hearing threshold was 60 dB HL, or better, although DRS have been observed in individuals with better hearing thresholds when diagnosed using PTCs (e.g., Moore et al., 2000). On the other hand, there were occasions when hearing thresholds were as poor as 85 dB HL without evidence for a DR. Although the presence or absence of a DR at a specific audiometric frequency cannot be reliably determined from the hearing threshold alone, most adults who showed evidence for DRS had a hearing threshold at, or greater than, 65 dB HL. There is a sensitivity/specificity trade-off between separating adults with a DR from those without a DR. Vinay and Moore recommended testing for the presence of DRS when the hearing threshold exceeded 60 dB HL. The ability of hearing threshold data to identify

Figure 6
A fast-PTC measured from a normal-hearing six year old boy. The masker swept from a low frequency to a high frequency. The tip of the tuning curve lies close to the 1 kHz signal frequency. Unpublished data from Alicja Malicka.
The ability of pure tone hearing threshold data to identify high-frequency cochlear dead regions in adults. The cut-off criterion is 60 and 70 dB HL in the top and bottom table, respectively. For example, in the top table, a dead region is assumed to be present if the hearing threshold is 60 dB HL, or greater, but absent if the hearing threshold is 55 dB HL, or lower. The performance characteristics were calculated from Vinay and Moore (2007).

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 dB HL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td>24/25 = 96%</td>
<td>431/518 = 83%</td>
<td>(24+431) / (25+518) = 0.84</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>36/36 = 100%</td>
<td>362/502 = 72%</td>
<td>(36+362) / (36+502) = 0.74</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>100/100 = 100%</td>
<td>249/392 = 64%</td>
<td>(100+249) / (100+392) = 0.71</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>132/132 = 100%</td>
<td>119/283 = 42%</td>
<td>(132+119) / (132+283) = 0.60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 dB HL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 Hz</td>
<td>23/25 = 92%</td>
<td>477/518 = 92%</td>
<td>(23+477) / (25+518) = 0.92</td>
</tr>
<tr>
<td>1000 Hz</td>
<td>35/36 = 97%</td>
<td>415/502 = 83%</td>
<td>(35+415) / (36+502) = 0.84</td>
</tr>
<tr>
<td>2000 Hz</td>
<td>99/100 = 99%</td>
<td>319/392 = 81%</td>
<td>(99+319) / (100+392) = 0.85</td>
</tr>
<tr>
<td>4000 Hz</td>
<td>129/132 = 98%</td>
<td>169/283 = 60%</td>
<td>(129+169) / (132+283) = 0.72</td>
</tr>
</tbody>
</table>

Vinay and Moore also investigated the relationship between the slope of the audiometric configuration and evidence for DRs. The audiometric slope was calculated between the estimated edge frequency and one octave higher. The mean slope of the audiogram was 15–20 dB/octave (depending on the frequency at the edge of the DR) when the TEN test showed evidence for a DR. When there was no evidence for a DR, the slope was 8–15 dB/octave. Since the low frequency side of the travelling wave pattern is usually relatively steep, it is to be expected that there will be a steep slope in the frequency range nearest the start of the DR. Unfortunately, there was considerable variability around the mean slope for both groups. Other studies have also shown considerable overlap between the steepness of the slope of the audiogram and the presence/absence of a DR (Preminger et al., 2005; Aazh and Moore, 2007). Thus, the audiometric threshold or the steepness of the slope of the audiogram does not provide a reliable indication of the presence or absence of a DR.

A number of studies have reported the presence of DRs in selected patient groups. Moore et al. (2000) reported that 68% of adult ears showed evidence for DRs; however, these adults were selected because they were likely to have DRs (based on audiometric configuration). Preminger et al. (2005) selected 49 adults having two (or more) hearing thresholds within the range 50 to 80 dB HL and reported that 29% of their adults showed evidence for DRs (6 unilateral, 8 bilateral). They used stricter criteria for identifying a DR than most other studies. Jacob et al. (2006) reported that 92% of ears with a moderate to severe sloping sensorineural showed evidence for DRs. Markessis et al. (2006) selected 35 adults with a moderate-to-severe hearing impairment with a slope of 20 dB/octave over at least one octave from 1 and 8 kHz and reported that over 87% of ears showed evidence for DRs. All thresholds at 4 kHz were greater than 65 dB HL yet only 52% showed evidence for DRs. Aazh and Moore (2007) tested 98 adults with hearing thresholds between 60 and 85 dB HL at 4 kHz and reported that 37% showed evidence
for DRs. Palma et al. (2005) tested one ear each from 28 adults who had at least one hearing threshold better than 60 dB HL and reported evidence for DRs in 25% of ears. Cairns et al. (In Press) tested 20 adults who had hearing thresholds between 41 and 95 dB HL and a difference of at least 20 dB between adjacent audiometric frequencies. They reported evidence for DRs in 22.5% of ears. Cairns et al. also reported the presence of DRs in young people who had a severe-to-profound hearing impairment. They tested 23 ears of 15 teenagers who had at least one hearing threshold better than 80 dB HL and reported that there was evidence for DRs in 13% of ears. In an earlier study using a similar population, Moore et al. (2003) reported evidence for DRs in 63% of ears. The presence of DRs was probably lower in the more recent study by Cairns et al. (2007) for a number of reasons. First, they did not test above 4 kHz where DRs were probably very common. Second, they used a smaller ascending step size of 2 dB: if they had used an ascending step size of 5 dB then the number of ears meeting the criteria would have increased to 48%.

Many of the studies listed above have used pre-selected groups of patients and this probably explains the highly variable occurrence of DRs. The one exception is the study by Vinay and Moore (2007b), who reported that 54% of unselected individuals, referred for fitting of a hearing aid, met the criteria for a DR at one or more frequency in at least one ear. It is not known how many of these individuals had a ‘clinically significant’ DR. A clinically significant DR is defined here as ‘a DR that influences selection of amplification characteristics’. As will be shown in the next section, a high-frequency DR probably only influences the selection of amplification characteristics if it extends down to at least 2 kHz. We reviewed the audiology records of new adult hearing aid referrals at one of our local Audiology Services in South Manchester for the first quarter of 2007. There were 273 referrals, 242 having a sensorineural hearing impairment and 63 (91 ears) had a high-frequency hearing-impairment of 60 dB HL, or greater, that extended down to at least 2 kHz. Therefore, 26% (i.e., 1 in 4) of adult hearing aid referrals with a sensorineural hearing impairment may have a clinically significant DR. Data are currently being collected by Toal and Munro to identify which of these patients have a clinically significant DR: the number is likely to be much smaller than 1 in 4 since we know from Vinay and Moore (2007b) that only 30% of ears having a threshold of 60 dB HL, or greater, at 2 kHz meet the criteria for DR.

6. What are the implications for hearing instrument fitting?

There is evidence that high-frequency amplification may not always improve speech recognition in adults with a high-frequency hearing-impairment. Some studies have shown no benefit (e.g., Murray and Byrne, 1986) while others have shown a degradation in performance (e.g., Ching et al., 1998). There is little agreement on the degree of loss and/or audiometric configuration that can be used to identify those who will benefit from high-frequency amplification. The lack of benefit may be due, at least in part, to the presence of DRs, although there is some controversy in this regard. A growing number of studies have investigated the benefit of high-frequency amplification in adults with DRs. These studies have used adult listeners and measured speech recognition performance in quiet (Vickers et al., 2001), background noise (Baer et al., 2002) or both (Mackersie et al., 2004).

Studies using speech in quiet

Vickers et al. (2001) compared performance in 18 ears with a high-frequency hearing-impairment. Twelve ears had DRs and six ears did not have DRs. Subjects listened to vowel-consonant-vowel (VCV) nonsense syllables such as /aba/ or /ama/. The VCVs were
presented over earphones and amplified to match the frequency-gain characteristics of the Cambridge prescription formula (Moore and Glasberg, 1998). The listener’s performance was then measured after low-pass filtering, i.e., with high frequency amplification removed. Figure 7 shows the outcome from three hypothetical subjects that serve to illustrate the pattern of findings reported by Vickers et al. The scores for subject A improve with increasing cut-off frequency, i.e., the subject benefits from providing high-frequency amplification. This pattern is characteristic of subjects who do not have a DR. Subjects B and C both have a DR commencing around 1 kHz. In both subjects, performance improves up to around one octave above the start of the DR. However, performance above this frequency is different for the two subjects. Subject B did not show any benefit from provision of amplification at the very high frequencies but also did not show any deleterious effects. Most of the DR subjects in the Vickers et al. study showed this pattern of results. However, three (25%) subjects were like Subject C, i.e., the provision of amplification well within the DR had a deleterious effect on performance. One explanation for the divergent pattern at frequencies well above the edge frequency of the DR is that listeners who did not show deterioration in performance did not receive the same restoration in audibility because real-ear gain was limited to a maximum of 50 dB. In summary, the results show that subjects with extensive DRs can extract useful information up to about one octave inside the DR.

Vinay and Moore (In Press) carried out a study that was similar in design to that of Vickers et al. but the listeners had low frequency hearing impairment. There were 19 ears with DRs that commenced from 0.75 kHz or higher and 22 ears without DRs. The ears with DRs did not perform as well as ears without DRs when using broadband amplification. In addition, ears with low frequency DRs benefited from low frequency amplification that extended into the DR by about one octave. However, there was deterioration in their performance when amplification extended well into the DR.

These findings form the basis for the recommendation to limit high-frequency amplification to around 1.7 above the start of the DR (Moore, 2004). This is illustrated in Figure 8 where the edge of the DR is around 1 kHz. The audiogram forms on the left and right shows an extensive low frequency and high frequency DR, respectively (shaded portion). For the low frequency DR, there is little point in providing amplification at frequencies below about 0.6 kHz (1 kHz / 1.7): for the high frequency DR, there is little point amplifying above about 1.7 kHz (1 kHz x 1.7). Of course, if the edge of the high frequency DR commenced around 3 kHz then there would be no need to restrict high-frequency amplification since the bandwidth of most current hearing instruments is unlikely to extend above 5 kHz (3 kHz x 1.7). There is some controversy regarding these findings and
Rankovic (2002) is of the opinion that speech recognition performance can be predicted based on the Articulation Index (AI), regardless of the presence or absence of DRs. However, Moore (2002b) has shown that the incremental benefit of amplifying well above the edge of the DR is not as great as that predicted by the AI.

Vestergaard (2003) compared the effect of low pass filtering of words on 11 ears with DRs and 11 ears with no DRs. Listeners were tested while wearing their hearing aids as fitted by their audiologist. Moore (2004) re-analysed the Vestergaard data so that they could be compared with those of Vickers et al. (2001). Listeners with extensive DRs did not perform as well as subjects without DRs (or DRs restricted to very high frequencies) nor did they show the same incremental benefit with amplification well inside the DR. Consistent with Vickers et al. listeners with DRs had a more severe hearing impairment than those without DRs; therefore, it is not clear if the difference between groups of listeners is due to the presence of extensive DRs or if there are confounding variable such as severity of hearing impairment.

Mackersie et al. (2004) compared performance in 16 ears with a high-frequency hearing impairment. Eight ears had DRs and eight ears, matched for audiogramic configuration, did not have DRs. Subjects listened to VCV nonsense syllables in quiet, at 65 dB SPL, while wearing a hearing instrument set to approximate DSL (Cornelisse et al., 1995) frequency-gain targets. The subject’s performance was then measured after low-pass filtering. Mackersie et al. reported no difference in performance between the two groups. This contrasts with the results of previous studies. One difference noted by Mackersie and colleagues is that the subjects in their study had a less severe hearing impairment and less extensive DRs. Therefore, the limited benefit of high frequency amplification when listening to speech in the quiet may be restricted to subjects with extensive DRs.

Studies using speech in noise
Baer et al. (2002) carried out a study that was very similar to that of Vickers et al. (2001) and used many of the same subjects, except that the VCV stimuli were presented instead by speech-shaped noise. There were six ears with DRs and ten ears with no DRs. The noise had the same long-term spectrum as the VCV stimuli. The signal-to-noise ratio (SNR) was selected for each ear so that performance was 10-15% below performance in quiet. In ears without DRs, performance improved with increasing cut-off frequency; however, in ears with DRs, performance generally improved with cut-off frequency up to about 100% above the edge frequency of the DR, but with little further increase.
The study by Mackersie et al. (2004) reported above also measured performance in steady speech-shaped noise at a variety of SNRs. For relatively favourable SNRs, there was no difference in performance between ears with and without DRs. However, for conditions with a less favourable SNR, performance of the DR ears did not show an increase in performance when amplification was extended beyond one octave above the estimated edge frequency of the DR.

As part of a clinical study on DRs, Preminger et al. (2005) demonstrated that hearing instrument users with high-frequency DRs require a more favourable SNR in order to obtain 50% correct on a speech in noise test compared to hearing instrument users with no DRs, despite similar audiograms. The DR patients also reported less benefit from amplification in noise.

Keidser and Dillon (2007) cite a study of Ching et al. (2005) who tested 75 listeners with hearing threshold levels ranging from mild to profound. Speech recognition was measured in quiet and babble noise for sentence material and a consonant test under a variety of filter conditions. The data showed no consistent relationship between speech proficiency and the elevation of hearing threshold in TEN. Currently, full details about this study have yet to be reported. For example, the number of listeners with extensive DRs is not known.

Not all researchers agree that it is necessary to use a separate test to confirm the presence of a DR in severe steeply sloping sensory hearing impairment, claiming that it would not alter hearing instrument management (Summers, 2004). In a small study, it was shown that 10 audiologists would not attempt to provide broadband amplification to individuals with a severe sloping hearing-impairment. Rather, they would provide amplification at the lower frequencies where hearing thresholds were better than 90 dB HL. This appears to agree closely with the recommendation of Moore (2004) to amplify up to 1.7 above the edge frequency. However, not every subject with a DR has a steeply sloping hearing impairment with thresholds greater than 90 dB HL. Vinay and Moore (2007) reported hearing thresholds that varied from 65 to 125 dB HL at 1.7 above the edge frequency. Therefore, the use of the TEN test to diagnose DRs is recommended.

In summary, the evidence from these adult studies is that: i) there is limited benefit of high-frequency amplification in listeners with extensive DRs when assessed in quiet or noise, and ii) listeners with less extensive DRs may show limited benefit from high-frequency amplification in environments that have poor SNRs.

7. Are there any outstanding research questions?

There are a number of research questions that have yet to be explored in detail and these span the continuum from fundamental to applied research. A few examples of the more clinically relevant questions are given below.

Few studies have investigated DRs in children. It is not known if the presence of DRs in babies and infants has the same implications for hearing instrument fitting as for adults. Currently there is a need to develop test procedures that can be used to identify DRs in babies. An electrophysiological test for the diagnosis of DRs would be a useful addition to the battery of objective hearing threshold techniques that can be used to estimate hearing ability in babies and infants. Preliminary studies in this area have used the cortical auditory evoked potential (CAEP) and the auditory steady state potential (ASSR) (Marriage and Moore, 2006, Kluk et al., 2007).

There are very few studies that have investigated the benefit of high-frequency amplification in children and none, as far as we
frequencies. It may be possible for infants, who are aided early, to make more use of the ‘remapped’ information than adults (with an acquired hearing-impairment) because of the greater plasticity in the developing auditory system.

The benefit of high-frequency amplification to children with a DR is one area of research that is being studied in our laboratory. We have used the TEN test and the fast-PTC method to identify DRs in congenitally hearing-impaired 8–12 year olds (Malicka and Munro, in preparation). Figure 9 shows the results for one child with an extensive high-frequency DR. The TEN test criteria were met at frequencies above 1 kHz. The fast-PTCs show evidence of off-frequency listening at 1.5 kHz but not 1 kHz.

We are currently investigating the benefit of high-frequency amplification using VCV stimuli presented in quiet and in noise. The preliminary findings for VCVs in quiet are similar to those reported for adults, i.e., there is little benefit to providing high–frequency amplification that falls well above the edge of an extensive DR. The findings for one child are shown in Figure 10. This child received no additional benefit when amplification was provided more than one octave inside the DR. On the other hand, children with DRs that are limited to the very high frequencies, or to small islands, appear to receive benefit with high-frequency amplification, although our preliminary findings suggest that the mean benefit from broadband amplification may not be as high as for children with no DR who have a similar audiometric configuration. Importantly, we have not observed a decrease in performance with increasing cut-off frequency in any child who has a DR.

An alternative approach for managing extensive high-frequency DRs might be to use frequency compression or transposition. This would mean that information that lies well within a DR can be recoded to lower

Figure 9
The findings from an 8 year child with an extensive high frequency dead region. This ear shows a steep-sloping high-frequency hearing impairment. The masked thresholds (filled triangles) were obtained with TEN at 80 dB/ERB. The TEN test criteria are met at frequencies above 1 kHz. There is no evidence of off-frequency listening on the 1 kHz fast-PTC. However, the tip of the 1.5 kHz fast-PTC is shifted to a lower frequency. Unpublished data collected by Alicja Malicka.

![Graph of hearing threshold levels](image1)

![Graph of signal/masker levels](image2)

are aware, have specifically investigated this in the context of DRs. Based on a review of the literature, Stelmachowicz (2002) and Stelmachowicz et al. (2004) concluded that adult studies should not be used to predict the importance of high-frequency amplification for infants and young children. We know that adults are able to extract some useful information from off-frequency listening as demonstrated by their ability to benefit from amplification up to one octave inside a DR. In addition, Rosen et al. (1999) has demonstrated that normal adult listeners can rather quickly learn to make use of high frequency information that is shifted to lower
frequencies. The use of frequency compression, in general, has produced mixed findings. Stelmachowicz (2004) points out that there have been few systematic studies that have addressed issues of candidacy, signal processing and parameter optimisation. The limited benefit may also have occurred without clear knowledge of the extent of the DR. There is emerging evidence from the work of Robinson et al. (2007) that there may be some benefit to taking information that falls well within a DR and recoding it to around the boundary of the DR.

Conclusions

There is evidence that DRs can occur in adults and children with an acquired or congenital hearing impairment. It is not possible to identify DRs without the use of test procedures other than the audiogram. One of these, the TEN test, is readily available and has been designed for ease of use within a clinical setting. Additional procedures such as the fast-PTC may also become available in the clinical setting. Approximately 50% of adult hearing aid referrals show evidence of a DR at one or more frequency. DRs are uncommon if the hearing threshold is 60 dB HL, or better. A 'high risk' group for clinically significant DRs would be individuals with an extensive region of hearing impairment of 60 dB HL, or greater (e.g., at all frequencies above 1 kHz). Adults with extensive high-frequency DRs do not appear to obtain the same benefit from broadband amplification as those without DRs. Most adults benefit from amplification that extends into the DR by about one octave. Above one octave, most adults show no further improvement although a subgroup may show a reduction in performance. What little information there is about children with high-frequency DRs suggests that some may not benefit from the provision of amplification well within a high-frequency DR; importantly, none (so far) have shown a reduction in performance.

Figure 10
Performance for a child with an extensive high frequency dead region commencing from around 1.5 kHz (see Figure 9). The percent correct score on the VCV test is plotted as a function of low-pass filter cut-off frequency. Unpublished data collected by Alicja Malicka.

Acknowledgements
Professor John M Bamford and Professor Brian CJ Moore provided helpful comments and suggestions on a previous version of this manuscript.

Footnotes
1 The lack of ABR in the presence of damaged IHCs but normal OHCs is consistent with the umbrella term of "auditory neuropathy".
2 Information about the test including how to purchase a copy of the TEN CD can be obtained online at www.hearing.psychol.cam.ac.uk
3 ERB is the average equivalent rectangular bandwidth of the auditory filter as determined for young, normal-hearing listeners at moderate sound levels and its value in Hertz is calculated as 24.7 (4.37F+1) where F is a frequency in kHz. For example, at 1 kHz the ERB is approximately 0.132 kHz (Moore, 2004).
4 For further details go to http://personalpages.manchester.ac.uk/staff/richardbaker
References

Marriage JE and Moore BCJ. Use of evoked potentials for verifying dead regions in the cochlea. Poster at Third Annual Convention of the British Academy of Audiology, 22-24 November 2006, Telford, UK.

Moore BCJ. Practical application of the TEN test for diagnosis of dead regions. Iranian Audiology, 2002a, 1, 17-21.

Moore BCJ and Alcantara JI. The use of psychophysical tuning curves to explore dead regions in the cochlea. Ear and Hearing, 2001, 22, 268-278.

Kevin J. Munro, PhD
Reader in Audiology,
School of Psychological Sciences, University of Manchester, UK

Kevin J. Munro is a reader in Audiology within the School of Psychological Sciences, University of Manchester, UK. He contributes extensively to undergraduate and postgraduate degree programmes in audiology. Kevin has research interests in reorganisation of the central auditory system, dead regions in the cochlea, and issues related to paediatric assessment and habilitation. He is frequently invited to participate in national and international conferences and his work is regularly published in academic journals. In 2001, the British Society of Audiology recognised Kevin’s contribution to research by awarding him the Thomas Simm Littler prize.
At the pulse of innovation

The Phonak Group specializes in the design, development, production, and worldwide distribution of technologically advanced wireless and hearing systems.

The combination of expertise in hearing technology and a strong cooperation with the hearing healthcare professionals allows Phonak to make a substantial improvement to the quality of life of individuals with hearing impairment and those close to them.

Today, with multiple brands and distribution channels, the Phonak Group offers a complete range of digital hearing instruments, along with high-tech speciality products and complementary wireless communication systems. With more than 3,900 employees worldwide, the Phonak Group is one of the three leaders in the industry.

Please visit www.phonak.com for up-to-date company and product information.