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This thesis applies active learning to a dataset of spectroscopically labelled sources from

the Sloan Digital Sky Survey (SDSS). The sources are selected from the photometric data

in the SDSS and the Wide�eld Infrared Survey Explorer (WISE). Two machine learning

techniques were used: a neural network and a random forest classi�er. Four different

active learning methods were investigated with these data: uncertainty sampling, best-

vs-second-best, variance reduction, and learning active learning, plus a generic random

method as a control. The uncertainty sampling was implemented using a form known as

entropy measure, for which a binary case and a multi-class case were tested separately.

These machine learning techniques were also applied to different con�gurations of Gaus-

sian clouds to help understand their effect on different types of data. The learning active

learning received particular focus as the most expandable method. To assist in the selec-

tion of active learning methods, the average accuracy scores and feature importances, as

well as the class precision, recall, and F1-scores were all compared. These tests resulted

in the entropy sampling and the learning active learning being selected as most capable,

requiring only 25, 600 datapoints in the training set, with the latter having the most room

for improvement.
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Chapter 1

Introduction

Classifying data accurately and ef�ciently has always been a problem for large sets of

data, especially for the reams of information found in astronomical surveys. Originally,

once observations started to be made at an increased rate, human computers (mostly

women) were employed en masse in some laboratories and observatories, a notable one

being the Cavendish Physical Laboratory (Allan & Leedham, 2021). Human computers

eventually became obsolete with the widespread adoption of programmable and me-

chanical computers with the ability to complete certain tasks faster and in greater vol-

ume. With the evolution of technology, data was gathered through wider and deeper

surveys (Shore, 2009).

While the hardware advanced, software to match it was needed so was developed

alongside; however, the sheer magnitude of data available today makes even the best

computers inef�cient at analysing the complete surveys accurately. This is a problem

for datasets such as the Sloan Digital Sky Survey (SDSS), where more than several hun-

dred million individual samples have been catalogued (Ahn et al., 2014). This is where

different algorithms come into play, in particular those where not all data needs to be

stringently analysed, only a small portion. An increasingly commonplace method in as-

tronomy (among other subjects) is the adoption of machine learning in the analysis of a

small portion of the data, then using the resultant model to evaluate the rest. Machine

learning can be thought of as the development of computational models that get better

through training or experience. This style of analysis has already been attempted with the

Sloan Digital Sky Survey and the Wide-�eld Infrared Survey Explorer (WISE), however

the methods are not perfect (Clarke et al., 2020).

Classifying data for the SDSS involves sorting each astronomical object into the target

classes: galaxies, quasars, and stars. This is a far cry from the previous interpretations

of the cosmos where only stars were really considered. In fact classi�cation involving

these three types of bodies has a rich history, opened up by Herschel's discovery of the

Milky Way being made of stars (Herschel, 1785). His �rst interpretation can be seen in

Figure 1.1. Wright's theory (Wright, 1750) also deserves a mention as a progenitor even if

the spiral galaxy does not directly relate to it. It was not until the so called Great Debate

(or the Shapley–Curtis Debate) where differing theories were put to the test on whether
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FIGURE 1.1: Herschel's �rst illustration of the stars of the Milky Way including 683 star-
gauges (Herschel, 1785).

the Universe was just the Milky Way - or if it contained multiple collections of stars, so

called island Universesat the time (Horvath, 2020). Edwin Hubble's discovery of Cepheid

Variablestars outside the Milky Way (Hubble, 1925) proved that the Universe was much

more expansive and holds multiple galaxies. This enabled the classi�cation of both stars

and galaxies. Quasars came about later as only through radio astronomy can they be

properly observed, beforehand they were simply curious galactic nuclei (Shields, 1999).

Before delving into the subtleties of quasars, it is best to understand roughly what stars

and galaxies are as this can help uncover why quasars themselves are so unique.

1.1 Stars

Stars are one of the most common sights in the night sky and have fascinated astronomers

and more for centuries. They are near spherical balls of plasma that have formed through

the gravitational collapse of dust clouds (Woodward, 1978). These dust clouds exist in

interstellar or intergalactic space as nebulae and gravitational instabilities can cause the

slightly denser regions to begin coalesce (Clarke, 1992). Once the compressed dust has a

high enough mass, the pressure exerted on the core from gravity allows nuclear fusion

to begin. This nuclear fusion begins by turning hydrogen into helium and once the inner

hydrogen is fused, helium to carbon. This process continues until reaching iron, at which

point the energy required for fusion is too great (ESO, 2001). The more mass the star has,

the faster this process occurs. The energy emitted from the fusion gradually travels out-

wards from the centre to the outer layers through photons where it may become trapped

by the various solar constructs around the surface or, be emitted in the form of electro-

magnetic radiation. The tremendous amount of radiation being released is what gives

the stars their glow.

Much like ogres and onions, stars are made of layers (Howe, 2009). A star with sim-

ilar properties to the Sun can split their layers into two sets; the inner and outer layers.

Called so due to the ability to observe them; the inner layers cannot be observed directly

while the outer layers can. The inner layers hold most of the mass of the star and are

believed to be what drives the immense magnetic �elds emanating from these luminous

objects. The inner layers consist of the: core, radiative zone, tachocline, and convection zone
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FIGURE 1.2: Hertzsprung-Russel diagram, showing the different star classi�cations as a
function of temperature (O, B, A, F, G, K, M, L, T). The Luminosity classi�cations ( I , I I , I I I ,

IV , V, VI , VI I ) are not labelled (SDSS, 2004).

(Howe, 2009). The outer layers are observed to have a:photosphere, chromosphere, tran-

sition region, and �nally the corona(Baker et al., 2021). The inner layers are not as well

understood because there have been no direct observations; however they have been de-

duced through physical laws and models. Stars have a life cycle that ranges from their

birth from the gaseous clouds to their eventual collapse once the fusion stops and they

turn into dwarf or neutron stars (among other things) (Kepler et al., 2021; Meisel et al.,

2018). These changes lead to different sub-classes related to their luminosity and temper-

ature. The luminosity class type shows how bright a star is and is designated I through to

VI I and the function for the temperature of the star is shown through the spectral classes

O-T - these can be seen on Figure 1.2).

1.2 Galaxies

After the realisation that the Universe held similar large-scale structures to the Milky

Way, they were named galaxies and a new area of astronomical observation dawned.

These massive collections of astronomical objects have been found to not only consist of

stars but include dust, nebulae, rogue bodies, and theoretically dark matter (Rubin, 1983;

Searle & Zinn, 1978). They can also orbit each other and some even have local dwarf

galaxies surrounding them, a well-known example being our own Milky Way and the

Magellanic Clouds (De Leo et al., 2020). Galactic structures are believed to be somewhat

synonymous, with a galactic core full of younger, larger, metal rich stars and a surround-

ing disk or area full of older, metal poor stars (Steinmetz & Navarro, 2002; White & Rees,

1978), but the large variation in morphology makes them dif�cult to de�nitively say.
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FIGURE 1.3: Hubble tuning fork (Buta, 2011).

Modelling them is also tough as the outer layers spin faster than conventional models

allow, which is where the dark matter idea comes in (Rubin, 1983; Persic et al., 1996).

Different galactic structures allow them to be grouped into different morphological

classi�cations. The original idea for this was from Edwin Hubble and was speci�ed in

his paper `Extra-Galactic Nebulae' (Hubble, 1926). The classi�cations for galaxies were

separated into two major groups: ellipticalsand spirals. Elliptical galaxies are relatively

smooth with no discernible patterns, spiral galaxies are split further into galaxies with

two obvious arms extending from a central point with a noticeable 'bar' and spirals with

multiple arms that look fairly clustered but without any noticeable 'bar'. These two major

groupings were then split further for easier identi�cation. There is a third intermediary

group known as lenticular galaxies where a disk structure exists but there are no obvious

spirals, and then a fourth group with no speci�c shapes related known as irregulars. Fig-

ure 1.3 shows these morphologies clearly (besides the irregular galaxies). Gerard de Vau-

couleurs expanded on this system and insisted that bars, rings, and spiral armswere also

important areas for classifying different galaxies (de Vaucouleurs, 1959). De Vaucouleurs

also assigned numbers to Hubble classi�ed galaxies (from � 6 to 10), with negative num-

bers representing elliptical galaxies, 0 showing a lenticular galaxy, and �nally positive

values were associated with spirals. These classi�cations along with numbered values

are generally accepted though there have been other attempts at applying alternate mor-

phological classes (Sheehan, 2011).

1.3 Quasars

Quasars are deep space radio sources that release a stupendous amount of energy, origi-

nally named quasi-stellar radio sourcesbefore a paper shortened the naming. The original

name was an accurate description of what they are; they were point-like objects (similar

to stars) yet were receding at a velocity outstripping that of any other catalogued star -

not to mention, they were the only star-like objects found in radio surveys (Smith & Hof-

�eit, 1963). There was much dif�culty in identifying what they were even after successive
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FIGURE 1.4: Diagram showing a uni�ed model of an AGN, with related expulsions (Jo-
vanović & Popović, 2009).

papers by Hazard et al. (1963); Schmidt (1963); Oke (1963); Greenstein (1963), where sen-

sible models were proposed. Then a suggestion in Matthews & Sandage (1963) theorised

a rough mass that would provide the right amount of energy for what was being seen,

such a mass would have a Schwarzschild radius of 10� 4 parsec, making it a supermas-

sive black hole (Shields, 1999). This leads to the current understanding that quasars are

an emission from a substantial active galactic nuclei (AGN), with the energy originating

from the accretion disk falling into the black hole (Shakura & Sunyaev, 1973; Jovanović

& Popović, 2009). A general uni�ed model exists for these incomprehensible engines, a

diagram of which can be seen in Figure 1.4, much of it is based on what can be observed

though, and not all AGNs are quasars; only the largest.

1.4 Classi�cation Methods

These three types of astronomical objects are distinct and need to be classi�ed into sep-

arate groups. Just viewing pictures of distant objects compiled by telescopes is not an

ef�cient way of going about it, though this can be helpful and is seen in projects such as

Galaxy Zoo (Lintott et al., 2008). Instead, spectroscopic measurements are typically used.

These measurements can be easily taken for close by objects, only there is no way to

know if an object is close before measuring it, thus a more general approach is required;

one which can be performed on every target. This broader method involves spectroscopic

analysis performed on the redshift of objects (Hutchinson et al., 2016). First appearing in

Davis et al. (1982), it has led to multiple surveys that purely focus on retrieving the red-

shift of targets which can then be used in classi�cation (Jones et al., 2004; Newman et al.,

2013). The spectral analysis of redshift is the attempt at deducing the physical parameters

of a target from the measured values. The emission line(s) from the object are identi�ed
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