Task Learning for Intention Detection using Deep Neural Networks and Robotic Arm Data in Glovebox

DOI:
https://doi.org/10.5281/zenodo.6366397

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
Introduction

Tele-manipulation systems are becoming more reliant on complex local (master) devices with sophisticated control methods; hence, the cognitive load on the operator during labour intensive tasks is increasing. The operator intention detection based on task learning can lead to better robot task performance with less human effort in teleoperation for a glovebox environment (see Fig. 1). Deep Convolutional Neural Networks are proposed to learn and predict the operator intention using robotic arm and its controller spatiotemporal data. Our preliminary experimental study on glovebox tasks for nuclear applications, particularly radiation survey and object grasping, provided promising results and encouraged us for a deeper research.

Data 2) Object Manipulation and Radiation Survey with Bilateral Teleoperation

Object posting in and out of glovebox and Radiation Survey using one Kinova arm. The data are recorded for 8 tasks (see Fig. 2), 20 samples for each task.
1) Post object in to the glovebox
2) Place object on the glovebox floor
3) Grasp the radiation sensor
4) Radiation survey
5) Return the radiation sensors
6) Grasp the object and post it out of the glovebox

Fig. 2. Object posting in glovebox and radiation surveying for 6 tasks

Data 3) Radiation Survey on a Grid Using a Bilateral Teleoperator

Grid radiation survey in Glovebox environment. The data are recorded for 6 operators from one Kinova Arm and a Haption.

4 samples recorded for each operator while performing radiation survey see Fig. 3, with a data comprise of 32 samples.

Fig. 3. Grid radiation survey

Deep Convolutional Neural Networks for Task Learning for Intention Detection

Intention detection is handled as a supervised learning process. The data are manually labelled to train a Deep Convolutional Neural Networks (DCNN) to detect the operator intentions from task learning.

The DCNN model (see Fig. 4) is implemented to map the robotic arm’s spatiotemporal data x_t to an output label y by learning an approximation function $y = f(x_t)$, n denotes time and s denotes data point recorded from the robot. The network consists of an input layer, 4 convolution layers, 4 pooling layers, 2 fully connected layers, 1 batch normalization, and an output layer with a softmax classifier. The set of 12 stacked layers in Fig. 4 utilizes Conv1D kernels (filter size x number of feature maps x number of filters), MaxPooling strides of 2 and pool size of 2. The models’ classification performance is evaluated using confusion matrices and F1 scores for 20% of the data.

Fig. 4. DCNN network architecture for intention detection. The diagram is generated using Neutron repository based on the models’ weights and biases.

Classification Results

Data 1) The DCNN successfully classified the tasks in table 1 by 100% ± 0.2% F1-score, depending on data split for training and testing. The confusion matrix in Fig. 5 shows the true positive predictions of the 6 classes.

Data 2&3) The DCNN is trained and tested to classify object manipulation in the glovebox environment. Experiments (E) detailed in table 2 are conducted to investigate the ability of the DCNN to identify the operator intention for a number of experiment using F1 scores. In Fig. 6 the model predicted the operator intention by 100% ± 6% F1 when object grasping compared to radiation survey and Grid radiation survey.

Table 2. Experiments in Fig. 6 description

Conclusion

The findings present valuable insight for operator intention detection for Glovebox environment manipulation. The results present a promising starting point for understanding, designing, and evaluating robotic systems for use by or with humans. The next step is to detect the operator intentions during online teleoperation manipulation.

<p>| Table 1. open-source data classes |</p>
<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinematic motion of the arm, Simple</td>
</tr>
<tr>
<td>2</td>
<td>Kinematic motion of the arm, Complex</td>
</tr>
<tr>
<td>3</td>
<td>Plastic & Wooden cube pushing</td>
</tr>
<tr>
<td>4</td>
<td>Plastic & Wooden cylinder rolling</td>
</tr>
<tr>
<td>5</td>
<td>Plastic & Wooden cone rolling</td>
</tr>
<tr>
<td>6</td>
<td>Plastic & Wooden cuboid pushing</td>
</tr>
</tbody>
</table>

[2] abdullah.alharthi@manchester.ac.uk (The University of Manchester)
[3] ozan.tokatli@ukaea.uk (RACE UKAEA)
[4] erwin.lopezpulgarin@manchester.ac.uk (The University of Manchester)
[5] inn@manchester.ac.uk (The University of Manchester)
[6] guido.herrmann@manchester.ac.uk (The University of Manchester)