TSV-Based Hairpin Bandpass Filter for 6G Mobile Communication Applications

DOI:
10.1587/elex.18.20210247

Citation for published version (APA):

Published in:
IEICE Electronics Express

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 12. Nov. 2021
TSV-Based Hairpin Bandpass Filter for 6G Mobile Communication Applications

Fengjuan Wang¹,², Lei Ke¹, Xiangkun Yin², Vasilis F. Pavlidis³, Ningmei Yu¹, and Yuan Yang¹

Abstract Aimed at sixth-generation (6G) mobile communication applications, three fifth-order novel ultra-compact hairpin bandpass filter is proposed. Through-Silicon Via (TSV), a three-dimensional integration technology, is used to implement the arms of hairpin units, and some hairpin units consist of four arms. In this letter, the design method of the three proposed filters is introduced, and the filtering characteristics are verified by HFSS, an industry-grade simulator based on finite element method. The results reveal that the three proposed filter has the center frequency of 0.405 THz, 0.3915 THz, and 0.3955 THz with bandwidth of 0.1 THz, 0.077 THz, and 0.063 THz and exhibits an insertion loss of 2.0 dB and return loss over 12.4 dB, 13.4 dB, and 14 dB. The size of the three proposed filters is both 0.284 × 0.0325 mm² (1.29 × 0.148 λg²).

key words: Sixth-generation (6G) mobile communication; terahertz (THz) frequency band; hairpin bandpass filter; Through-silicon via (TSV)

1. Introduction

With the high demands in wireless communications, sixth-generation (6G) mobile communication can provide efficient communication, unprecedented pace, and ubiquitous connectivity [1-2]. Terahertz (THz) range can meet the increased bandwidth, improved efficiency, and high-reliability of 6G wireless communication [3]. Microstrip bandpass filters with compact size and lightweight need to be redesigned for high-performance functional in the channels of communication systems [4]. Microstrip hairpin filter with simple structure, and high integration [5-8] has widely been utilized in microstrip bandpass filter at below 100 GHz. However, after entering the THz frequency band, the transmission loss of the microstrip line increases sharply, which no longer meets the performance requirements of the filter. Fortunately, Through-Silicon Via (TSV) can achieve very good signal transmission function in the THz frequency band. TSV provides vertical electrical connections with low loss and, therefore, has been extensively investigated and developed [9-29]. Therefore, a TSV-based hairpin bandpass filter at THz band is meaningful for 6G mobile communication.

The proposed filter is designed using odd-even mode analysis and coupling coefficient theory as described in Section 2. The results of the S-parameters and a performance comparison of relative THz bandpass filters are presented in Section 3. Finally, some conclusions are drawn in Section 4.

2. Design of TSV-based hairpin bandpass filter

In this section, the design method of the TSV-based four-arm hairpin filter is described. The TSV-based hairpin bandpass filter is consistent in the electronic circuit model given in Fig. 1 and topology structure given in Fig. 2. In this work, the substrate material in the TSV-based hairpin unit is assumed to be high-resistivity silicon. The high-resistivity silicon exhibits three important features, which are the dielectric constant of 11.9, dielectric tangent of 0.005 and resistivity of 1000 Ω•cm. The four types of hairpin unit is modeled in High Frequency Structure Simulator (HFSS) software [30], which are shown in Fig. 3. As depicted in Fig. 4, the three main structures of the fifth-order hairpin bandpass filter combines the input/output and internal coupling units.

¹School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
²School of Microelectronics, Xidian University, Xi’an, Shaanxi 710071, China
³Advanced Processor Technologies Group, Department of Computer Science, the University of Manchester, UK

a) wfxiao4@163.com

DOI: 10.1587/elex.18.20210247
Received June 08, 2021
Accepted June 29, 2021
Publicized July 09, 2021

This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented.
this work provides higher channel capacity for microwave signal transmission. Moreover, the size of the proposed hairpin filter is considerably smaller than the other hairpin filters, which shows that the structure of the proposed filters is more compact.

Table I. Structure parameters of proposed hairpin filter

<table>
<thead>
<tr>
<th>Structure parameter</th>
<th>Symbol</th>
<th>Value (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td>L_1</td>
<td>5.8</td>
</tr>
<tr>
<td>Width</td>
<td>W</td>
<td>5.1</td>
</tr>
<tr>
<td>Height</td>
<td>H_1</td>
<td>4</td>
</tr>
<tr>
<td>TSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter</td>
<td>D_2</td>
<td>5.1</td>
</tr>
<tr>
<td>Length</td>
<td>L_2</td>
<td>26.5</td>
</tr>
<tr>
<td>RDL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>W</td>
<td>5.1</td>
</tr>
<tr>
<td>Height</td>
<td>H_2</td>
<td>1</td>
</tr>
<tr>
<td>Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjacent TSV</td>
<td>D_3</td>
<td>12.3</td>
</tr>
<tr>
<td>Signal RDL to GND RDL</td>
<td>D_4</td>
<td>8</td>
</tr>
<tr>
<td>Type 1 hairpin unit to Type 2</td>
<td>S_1</td>
<td>2.5</td>
</tr>
<tr>
<td>Type 2 hairpin unit to Type 1</td>
<td>S_2</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Table II. Comparison with different THz filters

<table>
<thead>
<tr>
<th>Filters</th>
<th>Type</th>
<th>CF (THz)</th>
<th>BW (THz)</th>
<th>IL (dB)</th>
<th>RL (dB)</th>
<th>Size</th>
<th>λ_c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[26]</td>
<td>Hairpin</td>
<td>0.12</td>
<td>0.02</td>
<td>6.9</td>
<td>10</td>
<td>0.3*0.05</td>
</tr>
<tr>
<td></td>
<td>[27]</td>
<td>SIW</td>
<td>0.16</td>
<td>0.02</td>
<td>1.5</td>
<td>10</td>
<td>0.9*0.325</td>
</tr>
<tr>
<td></td>
<td>[28]</td>
<td>SIW</td>
<td>0.14</td>
<td>0.023</td>
<td>2.4</td>
<td>11</td>
<td>1.8*0.79</td>
</tr>
<tr>
<td></td>
<td>[29]</td>
<td>SIW</td>
<td>0.331</td>
<td>0.051</td>
<td>1.5</td>
<td>15</td>
<td>0.68*0.21</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td>Hairpin</td>
<td>0.405</td>
<td>0.1</td>
<td>2.0</td>
<td>12.4</td>
<td>0.284*0.0325</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td>Hairpin</td>
<td>0.3915</td>
<td>0.077</td>
<td>2.0</td>
<td>13.4</td>
<td>0.284*0.0325</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td>0.3955</td>
<td>0.063</td>
<td>2.0</td>
<td>14</td>
<td>0.284*0.0325</td>
</tr>
</tbody>
</table>

4. Conclusion

In this paper, based on TSV technology, a hairpin bandpass filter is first proposed for 6G mobile communications. The novel structure enhances the coupling effect and improves the return loss characteristic in the hairpin bandpass filter.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61774127, 61771388), the Fok Ying Tung Education Foundation under Grant no. 171112, Shaanxi Innovation Capacity Support Project
under Grant nos. 2020KJXX-093 and 2021TD-25.

References

