
The University of Manchester Research

Automatically Exploiting the Memory Hierarchy of GPUs
through Just-in-Time Compilation

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Papadimitriou, M., Fumero Alfonso, J., Stratikopoulos, A., & Kotselidis, C-E. (Accepted/In press). Automatically
Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation. 57-70. Paper presented at The 17th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE’21).

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:16. Oct. 2021

https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html
/portal/michail.papadimitriou-postgrad.html
/portal/juan.fumero.html
/portal/christos.kotselidis.html
https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html
https://www.research.manchester.ac.uk/portal/en/publications/automatically-exploiting-the-memory-hierarchy-of-gpus-through-justintime-compilation(8c2ba9c6-cef3-42c5-9f49-a87c97eaecd7).html

Automatically Exploiting the Memory Hierarchy of
GPUs through Just-in-Time Compilation

Michail Papadimitriou
The University of Manchester

United Kingdom
michail.papadimitriou@manchester.ac.uk

Juan Fumero
The University of Manchester

United Kingdom
juan.fumero@manchester.ac.uk

Athanasios Stratikopoulos
The University of Manchester

United Kingdom
athanasios.stratikopoulos@manchester.ac.uk

Christos Kotselidis
The University of Manchester

United Kingdom
christos.kotselidis@manchester.ac.uk

Abstract
Although Graphics Processing Units (GPUs) have become
pervasive for data-parallel workloads, the efficient exploita-
tion of their tiered memory hierarchy requires explicit pro-
gramming. The efficient utilization of different GPU memory
tiers can yield higher performance at the expense of pro-
grammability since developers must have extended knowl-
edge of the architectural details in order to utilize them.
In this paper, we propose an alternative approach based

on Just-In-Time (JIT) compilation to automatically and trans-
parently exploit local memory allocation and data locality on
GPUs. In particular, we present a set of compiler extensions
that allow arbitrary Java programs to utilize local memory
on GPUs without explicit programming. We prototype and
evaluate our proposed solution in the context of TornadoVM
against a set of benchmarks and GPU architectures, show-
casing performance speedups of up to 2.5𝑥 compared to
equivalent baseline implementations that do not utilize lo-
cal memory or data locality. In addition, we compare our
proposed solution against hand-written optimized OpenCL
code to assess the upper bound of performance improve-
ments that can be transparently achieved by JIT compilation
without trading programmability. The results showcase that
the proposed extensions can achieve up to 94% of the perfor-
mance of the native code, highlighting the efficiency of the
generated code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VEE ’21, April 16, 2021, Virtual, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8394-3/21/04. . . $15.00
https://doi.org/10.1145/3453933.3454014

CCS Concepts: • Software and its engineering → Just-
in-time compilers.

Keywords: GPU, JIT-Compilation, Tiered-memory
ACM Reference Format:
Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,
and Christos Kotselidis. 2021. Automatically Exploiting theMemory
Hierarchy of GPUs through Just-in-Time Compilation. In Proceed-
ings of the 17th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments (VEE ’21), April 16, 2021, Virtual,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3453933.3454014

1 Introduction
Heterogeneous hardware accelerators, such as GPUs and
FPGAs, have become prevalent across different computing
domains for accelerating mainly highly data-parallel work-
loads. In particular, GPUs have gained traction for accel-
erating general-purpose workloads due to their fine-grain
parallel architecture that integrates thousands of cores and
multiple levels of the memory hierarchy. In contrast to tra-
ditional CPU programming, GPUs contain programmable
memory that can be explicitly utilized by developers. Al-
though this results in gaining full control of where data can
be placed, it requires extensive architectural knowledge. The
majority of programming languages used for programming
GPUs (e.g., OpenCL, CUDA, OpenACC) expose to their APIs
specific language constructs that developers must explic-
itly use in order to optimize and tune their applications to
harness the underlying computing capabilities.

Recently, the trade-off between GPU programmability and
performance has been an active research topic. Proposed
solutions mainly revolve around polyhedral models [16, 49]
or enhanced compilers for domain-specific languages, such
as Lift [46] and Halide [37]. These approaches either have
high compilation overhead [7], whichmakes them unsuitable
for dynamically compiled languages, or they still require
developers’ intervention to exploit the memory hierarchy of
GPUs through explicit parallel programming constructs [37,
46].

57

https://doi.org/10.1145/3453933.3454014
https://doi.org/10.1145/3453933.3454014
https://doi.org/10.1145/3453933.3454014

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

In this paper we propose an alternative approach for au-
tomatically exploiting the memory hierarchy of GPUs com-
pletely transparently to the users. Our approach is based on
Just-In-Time (JIT) compilation and abstracts away low-level
architectural intricacies from the user programs, while mak-
ing its application suitable in the context of dynamically com-
piled languages. The proposed compiler extensions are in the
form of enhancements to the Intermediate Representation
(IR) and associated optimization phases, that can automati-
cally exploit local memory allocations and data locality on
GPUs. We implemented the proposed compiler extensions
and optimizations in the context of TornadoVM [12, 21],
an open-source framework for accelerating managed appli-
cations on heterogeneous hardware co-processors via JIT
compilation of Java bytecodes to OpenCL.
The proposed compiler optimizations for exploiting and

optimizing local memory have been evaluated against a set
of reduction and matrix operations across three different
GPU architectures. For our comparative evaluation we use
two different baseline implementations: (i) the original code
produced by TornadoVM that does not exploit GPU local
memory, and (ii) hand-written optimized OpenCL code. The
performance evaluation against the original non-optimized
code produced by TornadoVM, shows that the proposed
compiler extensions for exploiting local memory can achieve
up to 2.5𝑥 performance increase. In addition, we showcase
that our proposed extensions can achieve up to 97% of the
performance of hand-written optimized OpenCL code, when
compared to the optimized native code.

In detail, this paper makes the following contributions:
• It presents a JIT compilation approach for automati-
cally exploiting local memory of GPUs.

• It extends the capabilities of compiler snippets to ex-
press local memory optimizations by introducing com-
positional compiler intrinsics, that can be parameterized
and reused for different compiler optimizations.

• It evaluates the proposed technique across a variety
of GPU architectures, against the functionally equiva-
lent auto-generated unoptimized and the handwritten
optimized OpenCL code. Our solution achieves perfor-
mance speedup of up to 2.5𝑥 versus the original code
produced by TornadoVM, while reaching up to 94% of
the performance of the manually optimized code.

2 Background
This section gives an overview of the memory hierarchy
of GPUs using the OpenCL [34] memory model. In addi-
tion, it discusses current techniques for exploiting it, while
highlighting their advantages and disadvantages.

2.1 Overview of the OpenCL Memory Model
OpenCL provides cross-platform portability for parallel code
running on heterogeneous hardware, such as CPUs, FPGAs,

Kernel
Global Memory
(GB) Constant Memory

Workgroup

Workgroup

Workgroup

Local Memory (KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work
item

Private
(KB)

Work-item
Scope

Global
Workgroup
Size
Scope

Workgroup
Scope

Figure 1. Overview of the OpenCL memory model.

and, most commonly, GPUs. The parallel code that is of-
floaded on the GPU corresponds to a kernel, which is sub-
mitted to the device for execution. This code is executed
by the GPU Compute Units (CUs). Each Compute Unit has
several Processing Elements (PEs) which are considered as
virtual scalar processors. These PEs can execute on multi-
ple threads known as work-items, which are grouped into
work-groups. Furthermore, each CU can execute a number
of work-groups.
Additionally, OpenCL provides its own memory model

that consists of four memory tiers (Figure 1): Global mem-
ory provides a space that allows read/write privilege to all
work-items deployed by the OpenCL device driver. Global
memory encapsulates the constant memory tier, which can
be allocated for read-only accesses across all work-items. The
third memory tier is local memory, which can be accessed
(read/write) by all work-items within the same work-group
with the use of synchronization barriers [19]. Finally, the last
memory tier is private memory which belongs exclusively
to one work-item for storing data to a number of registers.

The GPU memory hierarchy is similar to the memory hi-
erarchy of conventional CPUs. The global memory (in the
range of GBs) corresponds to the main memory, whereas
local memory (up to hundreds of KBs) corresponds to the
L2 cache as it is shared among multiple work-items. Finally,
private memory (up to tens of KBs) is exclusive for each
work-item, and it is therefore semantically equivalent to the
L1 cache of the CPU. However, unlike CPUs, which have
hardware support for cache coherency, GPUs require com-
munication barriers for coherency. In addition, the access
latency between the different memory tiers of GPUs can
vary in a range from ~40 to ~450 cycles for local and global
memory, respectively [51]. Thus, it is essential for develop-
ers to manually explore for an optimal point in the GPU
memory hierarchy for storing data, in order to achieve high
performance when processing large volumes of data.

58

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

Detection Compositional Intrinsics

Detection &
Analysis Marking Attach New

Nodes

Memory Transformations

Memory
Access Space

Loop &
Memory

Allocation

Application Dependent Application &
Architecture Dependent

Architecture Dependent

Figure 2. Overview of the proposed JIT compilation flow for automatically exploiting the GPU memory hierarchy.

2.2 Data Locality & Loop Transformations
Data locality is crucial for performance on the vast majority
of applications executed on both homogenous and hetero-
geneous computing systems. Modern optimizing compilers
targeting CPUs improve the spatial and temporal locality of
coherent caches by employing optimizations, such as loop
transformations. These transformations attempt to alleviate
cache misses, while reducing any bank conflicts and TLB
misses [32]. Therefore, optimizing compilers apply a number
of loop transformations, such as loop unrolling, loop tilling,
and loop un-switching [1, 2, 33].

Loop transformations have been also studied onGPUs [48].
For instance, loop tiling has been used to improve data local-
ity and load balancing among the parallel threads on GPUs;
since data split in smaller batches (tiles) can be accessed
more efficiently, thereby improving the spatial locality. Ex-
cluding the programmability effort for manually achieving
loop tiling, a prime challenge for compilers is the decision
for the optimal tile size. This decision must be adaptive to
the memory characteristics, such as the size of local memory.
Thus, the decision for the optimal tile size has high com-
plexity and is often taken based on heuristics. Polyhedral
compilation [8, 16, 24, 49] is currently the state-of-the-art
approach to automatically apply loop tiling for code tar-
geting GPUs. This approach can yield high performance
and often performs comparably to manually optimized li-
braries [4]. Nonetheless, polyhedral compilers are more suit-
able for ahead-of-time compilation due to the overhead in
the analysis phase and the code generation [41], compared
to other traditional compilers (e.g. Java HotSpot C1/C2).

2.3 Enabling GPU Tier-Memory via JIT compilation
As mentioned in the previous subsection, and will be further
discussed in Section 5, current polyhedral approaches for ex-
ploiting the GPU memory hierarchy at compile time are not
viable for dynamically compiled languages, due to their in-
creased overhead in the analysis and code generation phases.
Hence, current solutions for exploiting and optimizing local
memory of GPUs typically expose low-level programming
constructs [40] to the API. This way, the responsibility is
passed to developers who must have advanced architectural
knowledge to utilize the memory tiers efficiently and safely.
In this work, we present a technique that allows JIT compilers
to use local memory and perform loop tiling, transparently
to the developers.

3 GPU Memory-Aware JIT Compilation
This section presents our main contributions towards auto-
matically exploiting and optimizing the memory hierarchy
on GPUs via JIT compilation.

3.1 Overview
Figure 2 presents an overview of the JIT compilation pro-
cess for exploiting local memory. The proposed approach
includes three different phases: detection, compositional in-
trinsics, and memory transformations. All phases are applied
to the common IR of the TornadoVM JIT compiler (which
is a superset of the Graal IR [18]). The TornadoVM IR uses
the sea-of-nodes [13] common representation, which en-
compasses both the control-flow and data-flow nodes. This
representation allows the compilation and optimization of
Java bytecodes to OpenCL by performing IR transformations.

The detection phase scans the IR to locate specific nodes,
such as accesses to/from arrays through read andwrite nodes,
as well as the induction variables. To use local memory, nodes
that are commonly used to read and write from/to memory
are first located (by default, the JIT compiler assumes all
accesses target GPU’s global memory). These array accesses
are detected via indexed read and write nodes in the IR. The
detection phase is crucial for the compilation process as: a) it
provides the exact place in the IR to read/write from/to local,
instead of global memory, and b) it analyzes all nodes accessi-
ble from the indexed read/write nodes, such as the induction
variables and the parameters of the compiled method. This
information is accounted during the detection phase to in-
troduce and attach a new node. The newly introduced node
encloses the read and write nodes and it is used by the next
phases to perform aggressive optimizations regarding GPUs’
local memory (Sections 3.3) and loop tiling (Section 3.4).
The compositional intrinsics phase adds to the IR the

nodes needed for performing memory allocation, and pre-
pares the IR for code generation. In a nutshell, this phase
starts by specializing the IR for GPU architectures based on
the new nodes that were trailed from the detection phase. Al-
though the previous phase was only application dependent,
from this stage and onwards application and architecture
dependent optimizations are being applied to the IR. Dur-
ing this process, the high-level IR is lowered into a more
concrete lower IR (known as the lowering process) which
has a closer mapping to the underlying target architecture.
Since this process involves the introduction of a number of

59

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

�/�R�R�S�1�R�G�H
�3�D�U�D�P�H�W�H�U

�3�D�U�D�P�H�W�H�U �,�Q�G�H�[

�,�Q�G�H�[

������ ������

�D�����'�H�W�H�F�W�L�R�Q
��

�E�����0�D�U�N�L�Q�J
�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�/�R�R�S�1�R�G�H

�: �U�L�W�H�,�Q�G�H�[�H�G�/�R�F�D�O

�3�D�U�D�P�H�W�H�U
�,�Q�G�H�[

������

�F�����&�R�S�\

�&�R�S�\�7�R�/�R�F�D�O

�&�R�S�\�7�R�*�O�R�E�D�O

�6�L�]�H

�5�H�D�G�,�Q�G�H�[�H�G�1�R�G�H

�3�D�U�D�P�H�W�H�U �,�Q�G�H�[

�/�R�R�S�1�R�G�H
�3�D�U�D�P�H�W�H�U �,�Q�G�H�[

�5�H�D�G�,�Q�G�H�[�H�G�1�R�G�H

�6�L�]�H
�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�6�L�]�H�6�L�]�H

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�: �U�L�W�H�,�Q�G�H�[�H�G�1�R�G�H�: �U�L�W�H�,�Q�G�H�[�H�G�1�R�G�H

Figure 3. IR transformations for the compiler intrinsics of local memory allocation, and data copies.

new IR nodes, we opted for creating and utilizing a set of
parameterized compiler intrinsics that can be composed at
run time to form larger graphs. These compiler intrinsics are
in the form of snippets [42] and they are essentially methods,
completely written in Java, that represent low-level opera-
tions that are being attached to the IR at runtime. Section 3.2
explains in detail, all the compiler intrinsics introduced for
automatically utilizing local memory.

Finally, the memory transformations phase is an archi-
tecture dependent optimization process. In this phase, the
JIT compiler processes the new nodes introduced during low-
ering, and completes the IR with the correct information to
access local memory. This low-level information includes the
base addresses and the offset arithmetic nodes. In summary,
this phase introduces new IR operations for: 1) copying data
from global to local memory, 2) materializing the indices to
read/write from/to local memory, and 3) copying the final
data from local to global memory upon finishing executing
a kernel. In addition, this phase invokes the OpenCL API
for obtaining device specific information to optimize local
memory sizes, based on the number of work-items deployed
and the available local memory.

3.2 Compositional Compiler Intrinsics
Compiler intrinsics are low-level code segments that are
typically expressed in low-level programming languages,
such as assembly or C. They represent optimized code for
common operations, such as the use of vector operations
or memory allocation. The JIT compilers of Graal and Max-
ineVM [31, 50] introduced the concept of compiler snippets
as a high-level representation of low-level operations [42].
With snippets, low-level operations are implemented in a
high-level programming language (Java) instead of the as-
sembly code. Since the aforementioned JIT compilers are
also implemented in Java, they do not need to cross lan-
guage boundaries to implement their intrinsics and, hence,
their code can be further optimized by applying common
compiler optimizations (e.g., loop unrolling, constant propa-
gation, etc.).

Fumero et al. [20] extended the use of compiler snippets to
express efficient parallel skeletons for GPUs in TornadoVM.
In this paper, we extend the capabilities of compiler snip-
pets to express local memory optimizations by introducing
compositional compiler intrinsics, that can be parameterized
and reused for different compiler optimizations. With this
approach, we can further increase the performance of input
applications by automatically exploiting local memory.
We implemented a set of parameterized compiler intrin-

sics that allow us to gradually lower the IR and generate
efficient GPU code that makes use of local memory. These
compiler intrinsics are involved in two different compilation
phases: the compositional intrinsics phase, in which we in-
sert the actual compiler intrinsics into the compiled graph
(IR), and the memory transformations phase, in which the
IR is optimized after inlining the intrinsics into the graph.
This approach offers a degree of flexibility to the compiler
to apply a number of optimizations, as well as to combine
intrinsics to express multiple optimizations. In detail, the
following intrinsics are introduced:
Local Memory Allocation: This intrinsic modifies the IR

to emit code for allocating arrays in local memory. Input
and output variables that have been detected in the first
phase, are marked as candidates for using local memory.
In this case, this compiler intrinsic introduces the logic to
declare and instantiate arrays in local memory. By design,
snippets do not support dynamic memory allocation, and
consequently, the Local Memory Allocation intrinsic does
not either. Therefore, array lengths have to be statically set.
To address this limitation, we provide the lengths of the
arrays to be stored in local memory as a parameter node
that can be dynamically changed and updated in the mem-
ory transformations phase. The actual size depends on the
amount of local memory available on the target device and
the number of threads to be deployed. In this way, multi-
ple combinations of local memory sizes can be generated
during runtime. Figure 3 illustrates the use of this compiler
intrinsic in our JIT Compiler. The left-hand side of Figure 3
shows the IR that represents an indexed read and an indexed

60

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

�/�R�R�S�1�R�G�H

�5�H�D�G�,�Q�G�H�[�H�G

�: �U�L�W�H�,�Q�G�H�[�H�G

�3�D�U�D�P�H�W�H�U

�3�D�U�D�P�H�W�H�U �,�Q�G�H�[

�,�Q�G�H�[

������

�D�����'�H�W�H�F�W�L�R�Q�� �/�R�R�S�1�R�G�H

�5�H�D�G�,�Q�G�H�[�H�G

�: �U�L�W�H�,�Q�G�H�[�H�G

�3�D�U�D�P�H�W�H�U

�3�D�U�D�P�H�W�H�U �,�Q�G�H�[

�,�Q�G�H�[

������

�E�����0�D�U�N�L�Q�J

�/�R�R�S�7�L�O�L�Q�J

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�: �U�L�W�H�,�Q�G�H�[�H�G�/�R�F�D�O

�3�D�U�D�P�H�W�H�U

�,�Q�G�H�[

������

�F�������&�R�S�\
�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�&�R�S�\�7�R�/�R�F�D�O

�&�R�S�\�7�R�*�O�R�E�D�O

�/�R�R�S�1�R�G�H

�/�R�R�S�7�L�O�L�Q�J

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

Figure 4. IR transformations for the compiler intrinsics of loop tiling, local memory allocation, and data copies.

write from/to an array inside a loop. The graph is read as
follows: the control flow nodes are connected with red ar-
rows, while the data-flow nodes are connected with black
dashed arrows. In addition, the introduction of a compiler
intrinsic is represented by a red node, while a blue node
represents a node needed to perform an optimization. In
this phase, the JIT compiler runs the detection phase, look-
ing for reads and writes that are enclosed in loops. Upon
the detection of the ReadIndexedNode/WriteIndexedNode

nodes (Figure 3(a)), the compiler marks them as candidates
to use local memory and introduces a set of new nodes (i.e.,
LocalArrayAlloc, Size) in the IR (Figure 3(b)).
Copy To Local Memory/Copy To Global Memory: These

compiler intrinsics introduce a copy from global to local
memory, and vice versa. These memory copies are presented
in Figure 3(c) by two new IR intrinsics CopyToLocal and
CopyToGlobal. Both intrinsics are performed during themem-
ory transformations phase and accept as inputs the local array
nodes and the corresponding indices from global and local
memory.

Load/Store Operations in Local Memory: This pair of intrin-
sics performs loads and stores operations from arrays that
reside in local memory to privatememory, and vice versa. Fig-
ure 3(c) illustrates these operations with two new IR intrin-
sics ReadIndexedLocal and WriteIndexedLocal that repre-
sent the load and store operations, respectively. This pair of
compiler intrinsics enables our JIT compiler to access the
local memory address space, as opposed to the TornadoVM
IR indices (ReadIndexed and WriteIndexed in Figure 3(b))
that do not support this functionality.
Reductions with Local Memory: This intrinsic improves

the reduction operations proposed by Fumero et al. [20], by
adding local memory support. By using the same technique
as described for the two previous compiler intrinsics, we uti-
lize the GPU local memory so as to increase the performance
of reduction operations on GPUs. Section 3.3 explains all
the IR transformations involved to generate efficient GPU
reductions using local memory via our compiler intrinsics.

Parameterized Loop Tiling for Local Memory:We also intro-
duced a set of compiler intrinsics that can be combined with
common loop optimizations, such as loop tiling and loop
unrolling. Although these loop optimizations are orthogonal
to the use of local memory, they can facilitate the use of local
memory. To do so, we introduced a compiler intrinsic in the
JIT compiler to perform loop tiling. This intrinsic receives,
as parameters, all arrays stored in local memory and all loop
indices that access local memory. Through the parameter-
ized architectural design of the compiler intrinsics, we can
further combine this optimization with loop unrolling. Fig-
ure 4 illustrates an example of this compiler intrinsic that
combines the local memory allocation with loop tiling. Fig-
ure 4(a) shows the detection phase with three primary nodes:
a loop node and two indexed read and write nodes. During
the detection phase the loop node is selected as a candidate
node for loop-tiling. The second graph shows the expansion
of the IR through the introduction of the compiler intrinsic
for loop-tiling. This new set of nodes in the IR enables a
new marking phase to apply local memory and loop tiling
(Figure 4(b)). Figure 4(c) shows the new IR after applying
local memory allocation, loop tiling, and the copies from
global to local memory (and vice versa once the loop tiling
optimization is performed).

For the rest of this section, we use two different use cases
to showcase how compositional compiler intrinsics are in-
troduced in the IR, and how they are optimized to efficiently
utilize the GPU memory hierarchy. Note that, although we
demonstrate our approach in the context of the TornadoVM
JIT compiler, the proposed technique can be used by other
compilation frameworks that provide similar features, such
as LLVM and GCC.

3.3 Exploiting Local Memory: Parallel Reductions
The first use-case that we utilize to showcase the proposed
technique regards the reduction operations, which are de-
fined as the accumulation of input values from a vector into
a single scalar value. Reductions are one of the basic primi-
tives for many parallel programming frameworks, such as

61

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

Figure 5. Node replacements during the lowering phase for the reduction compiler intrinsic.

Google Map/Reduce [15], Apache Spark [53], Flink [9], and
common libraries such as Thrust [6]. Therefore, optimizing
parallel reductions has been a well studied topic, especially
with regards to memory optimizations such as local mem-
ory [10, 14].
To perform high performance reductions on GPUs, Tor-

nadoVM currently makes use of compiler intrinsics [42] to
express parallel skeletons [20]. TornadoVM already solves
the problem of seamlessly expressing parallel reductions in
the compiler, albeit without exploiting data locality and GPU
local memory. As follows, we describe each compiler phase
of the proposed technique for adding local memory support
to reduction operations.

Detection. To express reductions in TornadoVM, develop-
ers use the@Reduce annotation. Upon adding the annotation,
the TornadoVM JIT compiler detects the reduction pattern
which is subsequently used by our solution to add local mem-
ory support.

In a nutshell, TornadoVM targets only the global memory
space by automatically dividing the iteration space in smaller
chunks (one chunk per work-group), and it performs a full
reduction within each chunk.

Lowering. TornadoVM implements parallel reductions
with the use of intrinsics (further information can be found
in [20]). Listing 1 exemplifies the compiler intrinsic (snippet)
that is used to perform a reduction operation. As shown,
the compiler intrinsic is also written in Java and during
compilation its generated IR is appended to the rest of the
compiled method’s IR graph. Consequently, the merged IR
can be re-optimized iteratively; a key advantage in compari-
son to intrinsics written in low-level languages which are
treated as native functions from the compiler.
We augmented the existing intrinsic to add support for

local memory by adding the statements in gray color (List-
ing 1). To achieve this, we implemented additional compiler
intrinsics to express local memory regions in a high-level

1 @CompilerIntrinsinc

2 void reductionIntrinsic(float[] input,

3 float[] output){

4 int idx = OpenCL.get_local_id(0);

5 int lgs = OpenCL.get_local_size(0);

6 int gID = OpenCL.get_group_id(0);

7 float[] local = OCL.alloc(SIZE, float.class);

8 local[idx] = input[OpenCL.get_global_id(0)];

9 for(int i = (lgs/2); i > 0; i/=2) {

10 OpenCL.localBarrier();

11 if (idx < i) local[idx] *= local[idx + i];

12 }

13 if (idx == 0) output[gID] = local[0];

14 }

Listing 1. Code of a compiler intrinsic in our JIT compiler
to utilize the GPU’s local memory for reductions.

manner. In this case, we explicitly use a local memory re-
gion by allocating the corresponding arrays in the generated
OpenCL source code, instead of defining a parameter to the
generated OpenCL kernel with a local memory region. Line
6 shows the allocation of the local array in local memory.
Note that the allocation is performed via an invocation to the
static method OCL.alloc, in which we pass the size and the
type of the array. Consequently, line 7 copies data from global
memory to local memory. Then, the actual reduction is com-
puted using local memory (line 10). Finally, line 12 performs
the final copy from local to global memory. These intrinsics
are lowered by the JIT compiler to generate OpenCL C code
that corresponds to the high level Java code. By using this
strategy of computing with local memory, the execution flow
from global memory is transformed to local memory.

During the lowering phase, the IR generated by the com-
piler intrinsic includes new nodes associated with allocating,
indexing, and storing data to the local memory region. Then,
the new nodes are inlined to the IR graph of the compiled

62

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

�2�S�H�Q�&�/���O�R�F�D�O�%�D�U�U�L�H�U�1�R�G�H

�/�R�R�S�(�Q�G�1�R�G�H

�/�R�R�S�1�R�G�H
�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�2�&�/���&�R�P�S�X�W�H

�2�S�H�Q�&�/���O�R�F�D�O�%�D�U�U�L�H�U�1�R�G�H

�9�D�O�X�H�1�R�G�H

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�7�L�O�H�6�L�]�H

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�9�D�O�X�H�1�R�G�H

Figure 6. IR nodes from the compiler intrinsic in Listing 2.

method. Figure 5 depicts the IR transformations upon replac-
ing the IR nodes introduced by the intrinsic in Listing 1 with
the corresponding lowered IR nodes (via substitution) for
local memory allocation. Similar to Figure 3, control-flow
nodes are connected with red arrows, while data-flow nodes
are connected using black dashed arrows. The left graph in
Figure 5 represents the IR when the code for the reduction
intrinsic is built. This graph includes the Invoke#OCL.alloc

node that represents an array allocation using local memory.
This node contains information about the size, that is used
as a data-flow node, allowing us to dynamically change the
size. Therefore, the same compiler intrinsic can generate pa-
rameterizable code for various local memory sizes. The right
graph shows the IR graph after applying the substitution to
allocate local memory.

Memory Transformations. A challenge in this phase
is that the upfront decision for the allocated size of local
memory has to be taken in accordance with the deployed
GPU threads (work-items). However the number of deployed
threads is determined at runtime and depends on the in-
put data size of the application. To tackle this challenge,
we attach the sizes of the local arrays as a data-flow node
(SizeNode) in the IR, as illustrated in Figure 5. In this case,
if the same reduction is executed, during runtime, with a
different input size, the generated code will be dynamically
adapted by changing only the size node that is attached to
the LocalMemoryAlloc node in the IR.

3.4 Data Locality for Local Memory using MxM
The second use-case that we use to express the efficacy of
the proposed technique is the 𝑂 (𝑁 3) matrix multiplication
operation. This code has three nested loops that can be paral-
lelized via TornadoVMwith the employment of the@Parallel
annotation. This section explains all the phases in the JIT
compilation flow that facilitate the utilization of data locality
in the local memory.

Detection. The detection phase of our JIT compiler tra-
verses the IR graph and seeks for the ReadIndexed and

1 @CompilerIntrinsinc

2 void tile(float sum, float[] arrA, float[] arrB,

3 int size, ValueNode operator,

4 ValueNode reduceOperator) {

5 OpenCL.localBarrier();

6 for (int x = 0; x < size; x++) {

7 sum = OCL.compute(arrA[x], arrB[x],

8 operator, reductionOperator);

9 OpenCL.localBarrier();

10 }

11 }

Listing 2. Example of a compositional compiler intrinsic for
processing loop tiling using local memory.

WriteIndexed nodes, which represent the memory accesses
to the global memory. Figure 4(a) illustrates this process in
which all the derived information about the induction vari-
ables and the parameters of the method contributes to the
addition of two new nodes that apply two compiler intrin-
sics; one for local memory allocation and a second for loop
tiling at the innermost loop.

Lowering. Figure 4(b) presents the marking of the two
nodes that were added in the previous phase (LocalArray-

Alloc and LoopTiling). During the lowering phase, the IR
nodes are replaced by the respective compiler intrinsics. As
the local memory allocation intrinsic was discussed in Sec-
tion 3.2, we describe here the application of the loop tiling
intrinsic. Listing 2 shows the code that implements the com-
piler intrinsic in our JIT compiler for loop tiling. This intrin-
sic accepts as inputs a set of arrays, the size for the loop tiling
and the operators to be applied inside the loop tiling. Line 6
shows the new loop to perform the tiling and line 7 shows a
method invocation that introduces the compute logic inside
this new loop. Note also that two OpenCL local barriers are
required to guarantee consistency. The first barrier in line 5
is used prior to loop tiling to ensure that the data have been
copied to the allocated space in the local memory, whereas
the second barrier (line 9) synchronizes the processing of the
tile across all work-items before the final copy to the global
memory. Note that developers do not need to worry about
maintaining memory consistency when using local memory,
since the barriers are automatically inserted by the JIT com-
piler. Figure 6 shows the IR representation for this compiler
intrinsic. The new loop is introduced as a control flow node
(LoopNode) right after the node of the OpenCL local barrier.
The loop body is represented by a compiler intrinsic called
OCL.Compute. This intrinsic acts as a placeholder for insert-
ing the IR nodes that represent the core computation within
the loop tiling, which, in the case of matrix multiplication, it
corresponds to a multiplication, followed by a sum. In turn,
all these new nodes will be replaced during the memory
transformations phase.

63

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

�/�R�R�S�1�R�G�H

�: �U�L�W�H�,�Q�G�H�[�H�G

�/�R�R�S�1�R�G�H

������

�

��

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�/�R�R�S�(�Q�G�1�R�G�H

�/�R�R�S�1�R�G�H

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�2�&�/���&�R�P�S�X�W�H

�2�S�H�Q�&�/���O�R�F�D�O�%�D�U�U�L�H�U�1�R�G�H

�9�D�O�X�H�1�R�G�H

�9�D�O�X�H�1�R�G�H

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�2�S�H�Q�&�/���O�R�F�D�O�%�D�U�U�L�H�U�1�R�G�H

�/�R�R�S�1�R�G�H

�&�R�S�\�7�R�*�O�R�E�D�O

�/�R�R�S�1�R�G�H

������

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�/�R�R�S�(�Q�G�1�R�G�H

�/�R�R�S�1�R�G�H

�5�H�D�G�,�Q�G�H�[�H�G�/�R�F�D�O

�/�R�F�D�O�%�D�U�L�H�U�1�R�G�H

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F
�/�R�F�D�O�%�D�U�U�L�H�U�1�R�G�H

�&�R�S�\�7�R�/�R�F�D�O

�/�R�F�D�O�$�U�U�D�\�$�O�O�R�F

�: �U�L�W�H�,�Q�G�H�[�H�G�/�R�F�D�O

�7�L�O�H�6�L�]�H
�7�L�O�H�6�L�]�H

�/�R�R�S�1�R�G�H
�/�R�R�S�1�R�G�H

�1�X�P�E�H�U�2�I�7�L�O�H�V
�1�X�P�E�H�U�2�I�7�L�O�H�V

Figure 7. IR node replacements during the memory transformation phase for the Matrix Multiplication application.

Memory Transformations. Figure 7 illustrates the tran-
sition of the IR from lowering (left graph) to the final memory
transformations phase (right graph). In the last phase before
the OpenCL C code generation, a set of new compiler intrin-
sics (e.g., CopyToLocal, CopyToGlobal) is introduced to use
local memory. The WriteIndexedLocal intrinsic of the right
graph in Figure 7 is used to store the final result from the
sum variable (Listing 2 - line 7). This phase has been previ-
ously discussed with regard to the local memory allocation
in Section 3.3.
Regarding the loop tiling optimization, the left graph in

Figure 7 shows the IR of the loop tiling compiler intrinsic
(Figure 6). During the memory transformations phase all the
IR nodes of the compiler intrinsic are lowered to OpenCL
instructions. In particular, this phase inlines the call of the
OCL.Compute method that was introduced in the previous
phase into a set of nodes that performs the computation of
the method. In this case, the call inlines all nodes involved
in the matrix multiplication operation within the loop tiling
(see right graph in Figure 7).

As the loop tiling compiler intrinsic is applied to the in-
nermost loop, three more nodes (LoopNode) are illustrated in
Figure 7 representing the three outermost loops. Therefore,
the lowering process of loop tiling starts by first traversing
the IR graph from the innermost loop, and then replacing
its loop bound with a TileSize node, and the bounds of
the third innermost loop with a NumberOfTiles node. The
two outermost loops remain the same as they represent the
sizes of parallel dimensions. To decide the tile size during

JIT compilation, the OpenCL driver is invoked to provide
the maximum number of the available work-items which is
device-specific. Similarly, the number of deployed threads
(GlobalWorkItems) is obtained from the OpenCL driver as
it matches the input data size of the application. This infor-
mation is used to calculate the number of total tiles.
Finally, due to our parameterizable compiler intrinsics,

existing compiler intrinsics can be combined with more ag-
gressive optimizations, such as loop unrolling and partial
escape analysis.

4 Evaluation
This section presents the performance evaluation of the
proposed technique against two baseline implementations:
(i) the original code produced by TornadoVM1 that does
not exploit GPU local memory, and (ii) hand-written opti-
mized OpenCL code. The OpenCL baseline implementation
includes the same set of optimizations as our extended JIT
compiler. Table 1 presents the hardware specifications of
the three GPU devices used in our testbed. The system runs
CentOS 7.4 with Linux kernel 3.10, and for all experiments
we use the OpenJDK JVM 1.8 (u242) 64-Bit with 16GB of
Java heap memory. In order to ensure that the JVM has been
warmed up, we execute 100 iterations per benchmark, and
we report the geometric mean.

1The exact commit point is: 81c70437800c252899a56e78ddbe80697f273973.

64

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

Table 1.Device and driver specification for the experimental
setup.

Device Vendor Work-Items Global Local Driver
GFX900 AMD 1024x1024x1024 8GB 64KiB 2766.4
GeForce 1650 Nvidia 1024x1024x64 4GB 48KiB 435.21
HD Graphics Intel 256x256x256 25GB 64KiB 19.43.14583

Table 2. The list of benchmarks used in the evaluation.

Benchmark Input
Sizes

Method/Kernel LOC Opts
Java Gen OpenCL Lc Tile

Reduction
(Min) 28 to 224 5 40 19 Y N

Reduction
(Add) 28 to 224 5 40 19 Y N

Reduction
(Mul) 28 to 224 5 40 19 Y N

Transpose
Matrix 28 to 224 6 77 14 Y N

Matrix
Multiplication

25x25 to
212x212 11 63 25 Y Y

Matrix Vector
Multiplication

26x23 to
216x28 9 55 20 Y Y

4.1 Benchmarks
We evaluate our technique against three reduction opera-
tions (Minimum, Addition, and Multiplication), and three ma-
trix operations (Matrix Multiplication, Matrix Transpose, and
Matrix Vector Multiplication). Table 2 presents the various pa-
rameters used for each benchmark including the input data
size, the lines of code (LOC), and the combination of optimiza-
tions applied per benchmark; namely local memory usage
(Lc) and loop tiling (Tile). The evaluated benchmarks have
been implemented in Java, for execution with TornadoVM,
and in OpenCL C for comparisons against hand-written opti-
mized native code. The third column (Java) of Table 2 shows
the LOC for the TornadoVM Java implementations, while the
fourth column (Gen) shows the LOC of the auto-generated
GPU code. Finally, the fifth column (OpenCL) shows the LOC
of the manually written OpenCL C codes. We present the
LOC of the implementations in order to provide an insight of
the complexity of the developed code with respect to utiliz-
ing the GPU memory hierarchy. Note that the OpenCL code
generation in TornadoVM (Gen) derives from SSA (Static
Single Assignment) representation (in which each operation
is assigned exactly once). Therefore, more lines of code are
generated. Regarding optimizations, all reductions exploit
local memory as explained in Section 3.3, whereas the matrix
operations exploit the different combinations (Lc, Tile), as
discussed in Section 3.4.

4.2 Performance Comparison vs. TornadoVM
Figure 8 presents the performance speedup achieved by the
proposed compiler optimizations, against TornadoVM which

does not support local memory. For both figures, the x-axis
shows the input size for each benchmark, while the y-axis
shows the speedup against TornadoVM.
In general, our approach outperforms TornadoVM by up

to 2.5x and 1.6x for matrix and reduction operations, re-
spectively. Additionally, all benchmarks exhibit performance
speedups across all data sizes. For Intel and NVidia GPUs,
the reported times include only the kernel execution on the
GPUs. On the contrary, for the AMD GPU the reported times
include also data transfers. This is due to a limitation of the
AMDOpenCL driver which can only report kernel execution
and data transfer times combined. For this reason we also
separate the discussion regarding performance between the
different GPUs.

AMDGPU Performance. As shown in Figure 8, our com-
piler optimizations yield performance speedups ranging from
1.02𝑥 to 1.58𝑥 on the AMD GPU. Regarding all reduction
operations (Figure 8(a-c)), we observe that the execution for
small input data sizes yields higher performance compared
to larger input sizes when utilizing local memory (up to
1.58x at 28 data elements in Figure 8(a)). Since the reported
times of the AMD GPU include also data transfers, the ob-
served speedups degrade as the input data sizes increase due
to the costly data transfers. Nevertheless, these overheads
do not result in slowdowns. Regarding matrix operations
(Figure 8(d-f)), the execution on the AMD GPU obtains a
maximum performance of 2.3x for matrix multiplication and
1.23x for matrix transpose, following similar trends with the
reduction operations.

Nvidia and Intel GPU Performance. As shown in Fig-
ure 8, the execution with local memory on Intel HD Graphics
(second bars) performs up to 35% faster than the baseline
configuration (216 data elements in Figure 8(a)). Regarding
the execution on the Nvidia GPU (third bars), performance
improvements of up to 48% are observed (212 data elements
in Figure 8(b)). As the data sizes increase, the relative per-
formance speedups of the proposed optimizations decrease.
This is attributed to the additional global barrier that had
to be placed into the generated code before the final read
from local to global memory. As the number of threads in-
creases and surpasses the amount of physical threads that
can run in parallel on the device, the overhead of the barrier
also increases. We plan to address the barrier overheads by
applying node hoisting in future work.
Concerning matrix operations (Figure 8(d-f)), the largest

speedup (up to 2.5x) is observed when running on the Intel
HD Graphics (218 data elements in Figure 8(e)). In general,
the observed speedups for matrix operations are higher than
those in reduction operations, mainly due to the combina-
tion of the applied optimizations (i.e., loop tiling and local
memory). Finally, as shown in Figure 8(e-f), for small data
sizes we observe no performance increases. This is attributed
to the loop unrolling optimization taking place at the early

65

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

(a) Reduction Minimum. (b) Reduction Addition. (c) Reduction Multiplication.

(d) Matrix Transpose. (e) Matrix Multiplication. (f) Matrix Vector Multiplication.

Figure 8. Performance comparison against vanilla TornadoVM (the higher, the better). The x-axis represents the input size for
each benchmark, while the y-axis shows the performance speedup against TornadoVM.

Figure 9. Relative performance of the code generated by
our extended JIT compiler against hand-written optimized
OpenCL implementation (the higher, the better).

stage of the optimizations which consequently negates the
local memory optimizations proposed in this paper. Never-
theless, it is possible to apply the proposed optimizations on
unrolled loops in future work.

4.3 Performance Comparison vs. Hand-Written
OpenCL

Figure 9 shows the relative performance of the code gener-
ated by the JIT compiler against the functionally equivalent
optimized (using local memory and loop tiling) OpenCL code.
Similarly to the previous experiments, the times reported on
the AMD GPU include both kernel and data transfer times
in contrary to Intel and Nvidia GPUs that report only kernel
times.

As shown in Figure 9, the performance of the JIT-compiled
code compared to native OpenCL C implementations for
reductions, reaches up to 53% on the AMD GPU, up to 83%

Table 3. Compilation times per phase.

Time (ms)

Benchmark TornadoVM Nvidia
Driver

Intel
Driver

AMD
Driver

Reduction Add 64.59 47.04 224.38 18.54
Reduction Mul 73.23 54.60 251.16 19.64
Reduction Min 81.38 57.70 258.61 18.85

Matrix Transpose 55.43 43.20 227.73 17.42
Matrix Mul. 62.21 48.10 250.68 21.32

Matrix-vector Mul. 61.31 52.40 254.68 19.32
GeoMean 65.81 50.39 239.06 19.16

on the Intel HD GPU, and up to 94% on the Nvidia GPU.
Regarding matrix operations (Figure 9), the JIT-compiled
code performs up to 78% on the AMD GPU, up to 92% on the
Intel HD GPU, and up to 82% on the Nvidia GPU, compared
to the native OpenCL C code. As expected, the results shown
in Figure 9 demonstrate that the performance of the JIT-
compiled code does not match that of the optimized OpenCL
C native code. However, the auto-generated code performs
competitively especially after considering the fact that no
user intervention for performance tuning is required.

4.4 Compilation overhead
Table 3 presents the time spent for JIT compilation sepa-
rated into two categories: TornadoVM and driver compilation
times. The TornadoVM compilation time is the time taken to
JIT-compile the Java bytecodes to OpenCL code, while the
driver compilation times are the reported times of the device
drivers for compiling the OpenCL code to machine code.

66

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

In order to better understand the JIT-compilation over-
heads, we investigated the Matrix Multiplication benchmark,
since it combines both the local memory allocation and loop
tiling. The JIT-compilation of that benchmark exhibits up to
63.7% of additional compilation time compared to the original
TornadoVM JIT compiler. From that additional compilation
time, the newly introduced optimization phases account for
up to 25%. The rest of the overhead is distributed amongst
the rest of compilation phases and they are attributed to the
increased size of the IR graph. The addition of local memory
and loop tiling awareness to the IR graph results up to 50%
additional nodes that are processed by subsequent optimiza-
tion. The occurrence of extra nodes that are processed by
the consequent optimization phases is translated to approx-
imately 35% increase of compilation time. In addition, the
percentage of compilation time in the total execution time is
less than 5% and, as in any other optimizing JIT-compilers,
this overhead is encountered only once during execution
(the initial compilation).

4.5 Automatically Exploiting Private Memory
Similarly to local memory, we also introduce private memory
array allocation on GPUs for arrays that are allocated and
used within the scope of each work-item. All Java objects
(including arrays) are allocated on the Java heap. However, if
the Java objects do not escape a certain scope (e.g., a method
scope), modern JIT compilers might apply a compiler tech-
nique called partial escape analysis (PEA) [43]. This opti-
mization aims to avoid the object allocation on the heap, and
instead, to use the Java stack and the internal registers.

We extend this model by using the private memory array
allocation for objects that do not escape the scope in which
they are declared. We analyze in the IR the data access pat-
terns, which track the usage per work-item of the declared
arrays. If arrays are only used within the work-item scope,
we replace the object allocation by an explicit allocation in
private memory of the required sized. This means that, if
the array is declared either within a sequential loop in Java
(without the @Parallel annotation), or in a parallel loop
without any data dependencies between its accesses, and the
array does not escape the method’s scope, then we replace
the allocation from the global memory into private memory.
Note that due to the limited number of physical registers, the
OpenCL driver might allocate the array in global memory.

Since our extensions to TornadoVM are tightly integrated
into the Graal compiler infrastructure, it is not possible to
isolate this optimization and measure its effect. Additionally,
by disabling PEA, arrays would be allocated in global mem-
ory; an operation which is not supported by TornadoVM.
Nevertheless, we implemented a synthetic benchmark to
demonstrate the effect of private memory usage in our com-
piler infrastructure. We run a reduction per work-item using
an array allocated in private memory versus an array us-
ing global memory on an NVIDIA GPU. To avoid compiler

optimizations from the NVIDIA CUDA compiler, we also
disabled compiler optimizations (cl-opt-disable). By an-
alyzing the PTX generated by the NVCC CUDA compiler,
we found that the private arrays are allocated in constant
memory, and the load operations are performed into local
memory. This version performs up to 2.3𝑥 times faster than
using only the global memory.

5 Related Work
This section discusses the related work regarding the expo-
sure of GPU memory optimizations into programming lan-
guages and implementations, and optimizations techniques
for memory transformations.
We classify the related work into two groups. The first

group describes approaches for exposing GPU features to
a wide range of high-level programming languages. The
second group focuses on various memory transformations
at the compiler level.

5.1 GPU Features into Programming Languages
In the context of dynamically compiled languages (e.g., Java)
several frameworks [3, 21] have been proposed to exploit
GPU acceleration. Aparapi [3] and TornadoVM [21] are Java-
based frameworks that dynamically compile Java bytecodes
to OpenCL code. Aparapi exposes specific language con-
structs for memory allocation (i.e., local memory) and mem-
ory synchronization (i.e., barriers) that programmers must
explicitly use [3]. On the contrary, TornadoVM generates
high-level bytecodes to abstract programmers from the GPU
programming model. However, it does not automatically
exploit fine-grain memory and does not expose low-level
constructs to developers. Moreover, IBM J9 [27] is another ex-
ample of a JIT compiler for GPU offloading, but it exclusively
compiles Java streams to CUDA-PTX code. The only memory
optimization supported by J9 is the placement of read-only
data to read-only caches. Similarly, the Marawacc [23] com-
piler and FastR-GPU [22] only exploited global and constant
memory via the Graal JIT compiler.
In addition, several parallel programming frameworks

exist [11, 17, 23, 29, 38, 44, 45, 47] that enable the compilation
of domain-specific languages on GPUs. Lift [26, 46] extends
its existing data parallel primitive types to accommodate loop
tiling (e.g., slide,pad) and its low-level OpenCL with local
memory (e.g., toLocal) allocation for stencil computations.
Ragan-Kelley et al. [37] introduced Halide, a domain-specific
language (based on C++) for executing high-performance
image processing code on GPUs. However, the exposure of
the GPU features at the programming language increases
the development cost, as the resulting performance is tightly
coupled with the programmer’s experience.

Our work differs from all aforementioned frameworks as
we propose an approach that automatically exploits the GPU

67

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

memory hierarchy, without exposing any specific language
constructs to the developers.

5.2 Compiler Techniques for Memory
Transformations

Verdoolaege et al. [49] used polyhedral models to automati-
cally transform C code to CUDA while utilizing shared mem-
ory and loop tiling. Similarly, Bondhugula et al. [8] proposed
PLUTO, an automatic loop nest parallelizer to exploit data lo-
cality via shared memory. In addition, Grosser et al. [24] have
extended the polyhedral models in PLUTO with loop split-
ting for stencil workloads. PolyJIT of Simburger et al. [41]
combines polyhedral optimization with multi-versioning at
run time; a technique that poses significant overhead during
code generation. A number of studies [4, 5, 30, 39] target
loop tiling optimizations and code generation for GPUs for
affine loops. Moreover, Di et al. [16] proposed an algorithm
to improve tiling hyperplanes by using dependency analy-
sis, while Grosser et al. [24] developed a polyhedral-based
parametric scheme leveraging run-time exploration of parti-
tioning parameters.

In addition, a number of non-polyhedral based approaches
have been also proposed. Kim et al. [28] presented an ap-
proach to map tensor contractions directly to GPUs, while us-
ing shared memory by a parametric code generation strategy
that utilizes a cost model for data movement. Chen et al. [11]
extended Halide’s support for new optimizations that tar-
get the memory hierarchy by introducing the concept of
memory score in the compiler. Yang et al. [52] introduced an
optimizing source to source compiler for C programs that
exploits a number of memory optimizations, such as con-
verting non-coalesced accesses, vectorization for memory
access, and tiling with shared memory. Additionally, Hage-
dorn et al. [25] proposed Elevate, a new functional language
to express various optimizations such as vectorization, tiling,
splitting, and others.
Our work improves upon the approaches above that em-

ploy exhaustive techniques to optimize memory transforma-
tions, as it provides a trade-off between compilation time
and achieved performance, making it more suitable for inter-
preted and dynamically compiled programming languages.

6 Conclusions
In this paper we presented an approach to efficiently exploit
the memory hierarchy of GPUs from dynamically compiled
languages. This is achieved by extending the capabilities of
compiler snippets to express local memory optimizations
by introducing compositional compiler intrinsics, that can
be parameterized and reused for different JIT compiler opti-
mizations. Our solution provides a trade-off between compi-
lation times and achieved performance, making it suitable for
JIT-compiled languages. The presented work has been pro-
totyped in the context of TornadoVM and includes compiler

extensions and optimizations to exploit GPU local memory
and loop tiling. Our proposed technique has been evaluated
across three GPU architectures and the results indicate that
it can achieve performance speedups of up to 1.58𝑥 and 2.5𝑥
for reduce and matrix operations, respectively. We also show-
cased that the performance of the proposed extensions can
achieve up to 94% of the performance of themanually written
OpenCL code. Most importantly, the aforementioned per-
formance increases come at no programmability costs since
they are transparently applied to unmodified user programs
at compile time.
In the future, we plan to apply our work to other types

of computations (e.g., stencil computations) while devising
further optimizations. Furthermore, we plan to expand the
proposed technique for other niche accelerators (e.g., FP-
GAs [35, 36]).

Acknowledgments
Thework presented in this paper is partially funded by grants
from Intel Corporation and the European Union’s Horizon
2020 E2Data 780245 and ELEGANT 957286 projects.

References
[1] 2014. Loop optimizations in Hotspot Server VM Compiler (C2). https:

//wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
[2] Qurrat Ul Ain, Saqib Ahmed, Abdullah Zafar, Muhammad Amir

Mehmood, and Abdul Waheed. 2018. Analysis of Hotspot Methods in
JVM for Best-Effort Run-Time Parallelization. In Proceedings of the 9th
International Conference on E-Education, E-Business, E-Management
and E-Learning (IC4E). https://doi.org/10.1145/3183586.3183607

[3] AMD. Accessed in 2020. Aparapi project. https://aparapi.github.io/
[4] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele

Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,
Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: A Polyhe-
dral Compiler for Expressing Fast and Portable Code. In Proceedings
of the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO).

[5] MuthuManikandan Baskaran, Uday Bondhugula, SriramKrishnamoor-
thy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. 2008. A Com-
piler Framework for Optimization of Affine Loop Nests for GPGPUs.
In Proceedings of the 22nd Annual International Conference on Super-
computing (ICS). https://doi.org/10.1145/1375527.1375562

[6] Nathan Bell and Jared Hoberock. 2012. Thrust: Productivity-Oriented
Library for CUDA. Astrophysics Source Code Library (2012).

[7] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Co-
hen, and Cédric Bastoul. 2010. The Polyhedral Model Is More Widely
Applicable Than You Think. In Compiler Construction (CC). Springer
Berlin Heidelberg.

[8] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007. PLuTo:
A Practical and Fully Automatic Polyhedral Parallelizer and Locality
Optimizer. Technical Report OSU-CISRC-10/07-TR70.

[9] P. Carbone, Asterios Katsifodimos, Stephan Ewen, V. Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing
in a Single Engine. IEEE Data Eng. Bull. 38 (2015), 28–38.

[10] Linchuan Chen and Gagan Agrawal. 2012. Optimizing MapReduce for
GPUs with Effective Shared Memory Usage. In Proceedings of the 21st
International Symposium on High-Performance Parallel and Distributed
Computing (HPDC).

68

https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=20415918
https://doi.org/10.1145/3183586.3183607
https://aparapi.github.io/
https://doi.org/10.1145/1375527.1375562

Automatically Exploiting the Memory Hierarchy of GPUs through Just-in-Time Compilation VEE ’21, April 16, 2021, Virtual, USA

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. 2018. TVM: End-to-End Optimization Stack for Deep
Learning. ArXiv abs/1802.04799 (2018).

[12] James Clarkson, Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak,
Maria Xekalaki, Christos Kotselidis, and Mikel Luján. 2018. Exploiting
High-Performance Heterogeneous Hardware for Java Programs Using
Graal. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes (ManLang). https://doi.org/10.1145/3237009.
3237016

[13] Cliff Click and Michael Paleczny. 1995. A Simple Graph-Based Inter-
mediate Representation. In ACM SIGPLAN Workshop on Intermediate
Representations (IR).

[14] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon
Hammond, Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Genera-
tion of Warp-Level Primitives and Atomic Instructions for Fast and
Portable Parallel Reduction on GPUs. In Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).

[15] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified
Data Processing on Large Clusters. 51, 1 (2008). https://doi.org/10.
1145/1327452.1327492

[16] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue. 2012. Automatic Parallelization of
Tiled Loop Nests with Enhanced Fine-Grained Parallelism on GPUs.
In 41st International Conference on Parallel Processing (ICPP).

[17] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F. Bacon, and
Stephen J. Fink. 2012. Compiling a High-Level Language for GPUs: (Via
Language Support for Architectures and Compilers). In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). https://doi.org/10.1145/2254064.2254066

[18] G. Duboscq, L. Stadler, T. Würthinger, D. Simon, C. Wimmer, and H.
Mössenböck. 2013. Graal IR: An Extensible Declarative Intermediate
Representation. In Asia-Pacific Programming Languages and Compilers
(APPLC).

[19] Jianbin Fang, Henk Sips, and Ana Lucia Varbanescu. 2014. Aristotle:
A Performance Impact Indicator for the OpenCL Kernels Using Local
Memory. Sci. Program. (2014). https://doi.org/10.1155/2014/623841

[20] Juan Fumero and Christos Kotselidis. 2018. Using Compiler Snippets
to Exploit Parallelism on Heterogeneous Hardware: A Java Reduction
Case Study. In Proceedings of the 10th ACM SIGPLAN International
Workshop on Virtual Machines and Intermediate Languages (VMIL).
https://doi.org/10.1145/3281287.3281292

[21] Juan Fumero, Michail Papadimitriou, Foivos S. Zakkak, Maria Xekalaki,
James Clarkson, and Christos Kotselidis. 2019. Dynamic Application
Reconfiguration on Heterogeneous Hardware. In Proceedings of the
15th ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments (VEE). https://doi.org/10.1145/3313808.3313819

[22] Juan Fumero, Michel Steuwer, Lukas Stadler, and Christophe Dubach.
2017. Just-In-Time GPU Compilation for Interpreted Languages with
Partial Evaluation. In Proceedings of the 13th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments. Association
for Computing Machinery. https://doi.org/10.1145/3050748.3050761

[23] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe
Dubach. 2015. Runtime Code Generation and Data Management for
Heterogeneous Computing in Java. In Proceedings of the Principles
and Practices of Programming on The Java Platform (PPPJ). https:
//doi.org/10.1145/2807426.2807428

[24] Tobias Grosser, Albert Cohen, Paul H. J. Kelly, J. Ramanujam, P. Sa-
dayappan, and Sven Verdoolaege. 2013. Split Tiling for GPUs: Auto-
matic Parallelization Using Trapezoidal Tiles. In Proceedings of the 6th
Workshop on General Purpose Processor Using Graphics Processing Units
(GPGPU). https://doi.org/10.1145/2458523.2458526

[25] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gorlatch,
and Michel Steuwer. 2020. A Language for Describing Optimization
Strategies. arXiv:2002.02268 [cs.PL]

[26] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. 2018. High Performance Stencil Code Genera-
tion with Lift. In Proceedings of the IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). https://doi.org/10.1145/
3168824

[27] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. 2015. Compiling
and Optimizing Java 8 Programs for GPU Execution. In International
Conference on Parallel Architecture and Compilation (PACT).

[28] Jinsung Kim, Aravind Sukumaran-Rajam, Vineeth Thumma, Sriram
Krishnamoorthy, Ajay Panyala, Louis-Noël Pouchet, Atanas Rountev,
and P. Sadayappan. 2019. A Code Generator for High-Performance
Tensor Contractions on GPUs. In Proceedings of the IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO).

[29] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language
and Compiler for Application Accelerators. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI). https://doi.org/10.1145/3192366.3192379

[30] Athanasios Konstantinidis, Paul H. J. Kelly, J. Ramanujam, and P. Sa-
dayappan. 2014. Parametric GPU Code Generation for Affine Loop
Programs. In Languages and Compilers for Parallel Computing (LCPC).

[31] Christos Kotselidis, James Clarkson, Andrey Rodchenko, Andy Nisbet,
John Mawer, and Mikel Luján. 2017. Heterogeneous Managed Runtime
Systems: A Computer Vision Case Study. In Proceedings of the 13th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE). https://doi.org/10.1145/3050748.3050764

[32] Markus Kowarschik and Christian Weiß. 2003. An Overview of Cache
Optimization Techniques and Cache-Aware Numerical Algorithms. In
Algorithms for Memory Hierarchies - Advanced Lectures, volume 2625
of Lecture Notes in Computer Science. Springer.

[33] David Leopoldseder, Roland Schatz, Lukas Stadler, Manuel Rigger,
Thomas Wurthinger, and Hanspeter Mossenbock. 2018. Fast-Path
Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler
Optimizations. In Proceedings of the 15th International Conference on
Managed Languages and Runtimes (ManLang). https://doi.org/10.1145/
3237009.3237013

[34] A. Munshi. 2009. The OpenCL Specification. In IEEE Hot Chips 21
Symposium (HCS). https://doi.org/10.1109/HOTCHIPS.2009.7478342

[35] M. Papadimitriou, J. Fumero, A. Stratikopoulos, and C. Kotselidis.
2019. Towards Prototyping and Acceleration of Java Programs onto
Intel FPGAs. In IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). https://doi.org/
10.1109/FCCM.2019.00051

[36] Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos,
Foivos S. Zakkak, and Christos Kotselidis. 2020. Transparent Compiler
and Runtime Specializations for Accelerating Managed Languages on
FPGAs. The Art, Science, and Engineering of Programming 5, 2 (2020).
https://doi.org/10.22152/programming-journal.org/2021/5/8

[37] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). https://doi.org/10.1145/2499370.2462176

[38] Toomas Remmelg, Thibaut Lutz, Michel Steuwer, and Christophe
Dubach. 2016. Performance Portable GPU Code Generation for Ma-
trix Multiplication. In Proceedings of the 9th Annual Workshop on
General Purpose Processing Using Graphics Processing Unit (GPGPU).
https://doi.org/10.1145/2884045.2884046

[39] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and Jacque-
line Chame. 2011. A Programming Language Interface to Describe
Transformations and Code Generation. In Languages and Compilers
for Parallel Computing (LCPC).

69

https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/3237009.3237016
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2254064.2254066
https://doi.org/10.1155/2014/623841
https://doi.org/10.1145/3281287.3281292
https://doi.org/10.1145/3313808.3313819
https://doi.org/10.1145/3050748.3050761
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2807426.2807428
https://doi.org/10.1145/2458523.2458526
https://arxiv.org/abs/2002.02268
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3168824
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/3050748.3050764
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1145/3237009.3237013
https://doi.org/10.1109/HOTCHIPS.2009.7478342
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.1109/FCCM.2019.00051
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.1145/2499370.2462176
https://doi.org/10.1145/2884045.2884046

VEE ’21, April 16, 2021, Virtual, USA Michail Papadimitriou, Juan Fumero, Athanasios Stratikopoulos, and Christos Kotselidis

[40] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala. 2015.
Aparapi-UCores: A High Level Programming Framework for Uncon-
ventional Cores. In IEEE High Performance Extreme Computing Confer-
ence (HPEC). https://doi.org/10.1109/HPEC.2015.7322440

[41] Andreas Simburger, Sven Apel, Armin Größlinger, and Christian
Lengauer. 2019. PolyJIT: Polyhedral Optimization Just in Time. Inter-
national Journal of Parallel Programming (2019).

[42] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq,
Lukas Stadler, and Thomas Würthinger. 2015. Snippets: Taking the
High Road to a Low Level. ACM Transactions on Architecture and Code
Optimization (TACO) (2015). https://doi.org/10.1145/2764907

[43] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In Proceedings
of the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). https://doi.org/10.1145/2544137.2544157

[44] M. Steuwer, P. Kegel, and S. Gorlatch. 2011. SkelCL - A Portable Skele-
ton Library for High-Level GPU Programming. In IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum. https://doi.org/10.1109/IPDPS.2011.269

[45] M. Steuwer, T. Remmelg, and C. Dubach. 2016. Matrix Multiplica-
tion Beyond Auto-Tuning: Rewrite-based GPU Code Generation. In
International Conference on Compilers, Architectures, and Sythesis of
Embedded Systems (CASES). https://doi.org/10.1145/2968455.2968521

[46] M. Steuwer, T. Remmelg, and C. Dubach. 2017. LIFT: A functional data-
parallel IR for high-performance GPU code generation. In Proceedings
of the IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). https://doi.org/10.1109/CGO.2017.7863730

[47] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,
Hassan Chafi, Martin Odersky, and Kunle Olukotun. 2014. Delite: A
Compiler Architecture for Performance-Oriented Embedded Domain-
Specific Languages. ACM Transactions on Embedded Computing Sys-
tems (TECS) (2014).

[48] Xiaonan Tian, Rengan Xu, Yonghong Yan, Sunita Chandrasekaran,
Deepak Eachempati, and Barbara Chapman. 2015. Compiler Transfor-
mation of Nested Loops for General Purpose GPUs. Concurrency and
Computation: Practice and Experience (2015). https://doi.org/10.1002/
cpe.3648

[49] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Igna-
cio Gómez, Christian Tenllado, and Francky Catthoor. 2013. Polyhedral
Parallel Code Generation for CUDA. ACM Transactions on Architecture
and Code Optimization (TACO) (2013). https://doi.org/10.1145/2400682.
2400713

[50] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick
Jordan, Laurent Daynès, and Douglas Simon. 2013. Maxine: An Ap-
proachable Virtual Machine for, and in, Java. ACM Transactions on
Architecture and Code Optimization (TACO) (2013). https://doi.org/10.
1145/2400682.2400689

[51] H. Wong, M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos.
2010. DemystifyingGPUMicroarchitecture ThroughMicrobenchmark-
ing. In 2010 IEEE International Symposium on Performance Analysis
of Systems Software (ISPASS). https://doi.org/10.1109/ISPASS.2010.
5452013

[52] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU
Compiler for Memory Optimization and Parallelism Management. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). https://doi.org/10.1145/
1806596.1806606

[53] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (Boston, MA) (HotCloud’10). USENIX Association,
USA, 10.

70

https://doi.org/10.1109/HPEC.2015.7322440
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1109/IPDPS.2011.269
https://doi.org/10.1145/2968455.2968521
https://doi.org/10.1109/CGO.2017.7863730
https://doi.org/10.1002/cpe.3648
https://doi.org/10.1002/cpe.3648
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1145/2400682.2400689
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1145/1806596.1806606
https://doi.org/10.1145/1806596.1806606

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of the OpenCL Memory Model

	3 GPU Memory-Aware JIT Compilation
	4 Evaluation
	5 Related Work
	5.1 GPU Features into Programming Languages
	5.2 Compiler Techniques for Memory Transformations

	6 Conclusions
	References

