Impact of 1/f noise on cosmological parameter constraints for SKA intensity mapping

DOI:
10.1093/mnras/stz3307

Document Version
Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Published in:
Monthly Notices of the Royal Astronomical Society

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher’s definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

Download date: 22. Jan. 2020
Impact of 1/f noise on cosmological parameter constraints for SKA intensity mapping

T. Chen,1,2,3* R. A. Battye,2 A. A. Costa,4 C. Dickinson2 and S. E. Harper2

1MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
3SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9FT, UK
4Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China

Accepted 2019 November 19. Received 2019 November 19; in original form 2019 July 28

ABSTRACT
We investigate the impact of 1/f noise on cosmology for an intensity mapping survey with SKA1-MID Band 1 and Band 2. We use a Fisher matrix approach to forecast constraints on cosmological parameters under the influence of 1/f noise, adopting a semi-empirical model from an earlier work, which results from the residual 1/f noise spectrum after applying a component separation algorithm to remove smooth spectral components. Without 1/f noise, the projected constraints are 4 per cent on w_0, 1 per cent on h, 2 per cent on b_{HI} using Band 1+Planck, and 3 per cent on w_0, 0.5 per cent on h, 2 per cent on b_{HI} using Band 2+Planck. A representative baseline 1/f noise degrades these constraints by a factor of ~ 1.5 for Band 1+Planck, and ~ 1.2 for Band 2+Planck. On the power spectrum measurement, higher redshift and smaller scales are more affected by 1/f noise, with minimal contamination comes from $z \lesssim 1$ and $\ell \lesssim 100$. Subject to the specific scan strategy of the adopted 1/f noise model, one prefers a correlation in frequency with minimized spectral slope, a low knee frequency, and a large telescope slew speed in order to reduce its impact.

Key words: instrumentation: spectrographs – methods: analytical – cosmological parameters – large-scale structure of Universe – dark energy.

1 INTRODUCTION
In recent times we have come to an era of precision cosmology, where CMB measurements from Planck satellite constrain a number of the cosmological parameters with $\lesssim 1$ per cent accuracy (Planck Collaboration VI 2018) within the standard ΛCDM model. However, for the study of dark sector which dominates in the late time Universe, one requires observations at much lower redshifts ($z \lesssim 1$) than the CMB ($z \approx 1100$). This can be achieved by measuring large-scale structures (LSS) of the Universe. The Baryon Acoustic Oscillation (BAO) feature, for example, is a key cosmological probe, which is the imprint left by acoustic waves in the early Universe and has a known scale of ≈ 150 Mpc (e.g. Anderson et al. 2014). By measuring the BAO scale at several redshifts, one can use it as a standard ruler to deduce the time evolution of the Universe, and in particular, the evolution of the dark sector (e.g. Bull 2016).

Conventionally, the measurement of BAO is achieved through optical galaxy surveys that detect individual galaxies with high resolution optical fibres. However, an alternative approach at radio wavelength is through the intensity mapping (IM) technique. The concept is that it maps a single emission line from multiple unresolved galaxies, each of which is below the detection limit, but resolves large-scale structures by measuring intensity fluctuations over cosmological distances (Battye, Davies & Weller 2004; Peterson, Bandura & Pen 2006). In addition to pixel-to-pixel fluctuations, the observing frequencies of radio IM surveys provide accurate redshift information, mapping the Universe in three dimensions (e.g. Weinberg et al. 2013; Kovetz et al. 2017; Bernal et al. 2019).

Neutral hydrogen (H I) remains in dense gas clouds hosted predominantly within galaxies, and is thus a good tracer of galaxy densities that reveals the matter density fluctuations in the Universe (e.g. Madau, Meiksin & Rees 1997). The 21 cm emission line (also known as H i line) comes from the spin-flip transition of electrons in neutral hydrogen, and is a good tracer of mass with minimal bias (e.g. Padmanabhan, Choudhury & Refregier 2015).

Many H I IM experiments have been proposed, with the first detection made by the GBT team at $z \approx 0.8$ through the cross-correlation between H I IM maps and optical data (Chang et al. 2010; Masui et al. 2013). Some H I IM experiments propose to use a single dish operating at lower redshifts ($z < 1$), such as GBT (Chang et al. 2010), BINGO (Battye et al. 2013), and FAST (Nan et al. 2011; Bigot-Sazy et al. 2016). Others propose to use an

* E-mail: tianyue@mit.edu

© 2019 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
interferometer, such as TIANLAI (Chen 2012), CHIME (Bandura et al. 2014), HIRAX (Newburgh et al. 2016), HERA (DeBoer et al. 2017), MWA (Bowman et al. 2013), LOFAR (van Haarlem et al. 2013), PAPER (Parsons et al. 2010), and LWA (Eastwood et al. 2018). The upcoming Square Kilometre Array (SKA) is promising in terms of conducting HI IM surveys, operating in interferometry mode for SKA-LOW, and single dish (total power) mode for SKA-MID (Bull et al. 2015; Santos et al. 2015; SKA Red Book 2018).

The success of an intensity mapping experiment will rely primarily on two aspects: (i) the effective removal of Galactic foreground contamination; (ii) the control of the instrumental noise and systematic errors. The Galactic foreground emission can be \(\sim 10^4 \) times stronger than the HI signal so that an effective component separation method must be applied to properly reconstruct HI signal from foreground contamination (e.g. Wolz et al. 2014; Alonso et al. 2015; Olivari, Remazeilles & Dickinson 2016). Systematics is another challenge which contaminates HI signal in two ways: (i) it mimics or obscures HI signals; (ii) it complicates the structure of Galactic foregrounds, making it difficult for component separation to properly subtract HI signals. For example, both Switzer et al. (2013) and Patil et al. (2017), using GBT and LOFAR for HI IM, respectively, found that mis-calibration is one of the main limiting factors for detecting HI signals. Radio-frequency interference (RFI), such as mobile phones and satellites, is another challenge for HI IM (Chang et al. 2010; Switzer et al. 2013; Harper & Dickinson 2018).

For a single dish radio telescope, significant contamination will come from the receiver 1/f noise, caused by gain fluctuations, \(\Delta G(t)/G \), in the receiver system (Nyquist 1928) resulting from ambient temperature changes, transistor quantum fluctuations, and power voltage variations. The term ‘1/f noise’ originates from the shape of the power spectrum that increases approximately inversely with audio frequency in the time-ordered-data (TOD), which means the 1/f noise has more power in long time-scale fluctuations than short time-scale. It can dominate Gaussian thermal noise and contaminate HI signal. In the observed map, 1/f noise will introduce stripes along the scan direction (Bigot-Sazy et al. 2015). Therefore, for detecting weak HI signals with IM, care must be taken to mitigate 1/f noise (Harper et al. 2018).

In this work, we focus on quantifying the impact of 1/f noise on cosmological parameter constraints using SKA IM. We adopt the semi-empirical 1/f noise model from Harper et al. (2018), and add it into a Fisher matrix analysis to project constraints on cosmological parameters, subject to the specific scan strategy and component separation method used in Harper et al. (2018). Section 2 introduces the SKA IM survey parameters and Section 3 gives the formulae for power spectra and Fisher matrix calculation. Sections 4 and 5 present the projected constraints with and without 1/f noise, respectively, and in Section 6 we draw conclusions.

2 THE SURVEY

The IM facility assumed in our analysis is SKA. SKA will be delivered in two phases, with SKA1 currently under construction, and the configuration of SKA2 to be decided. SKA1 will comprise two telescopes – SKA1-MID and SKA1-LOW. SKA1-MID is a dish array based in South Africa, observing between 0.35 and 1.75 GHz. SKA1-LOW is located in western Australia, observing between 0.05 and 0.35 GHz (SKA Red Book. 2018). For the purpose of our study, we will focus on using SKA1-MID since it observes LSS at low redshifts \((z < 3)\) where the dark sector dominates.

Following SKA Red Book. (2018), SKA1-MID consists of \(64 \times 13.5\) m MeerKAT dishes and \(133 \times 15\) m SKA1 dishes. For simplicity, we assume all 197 dishes have the same dish diameter of 15 m in our analysis, which will not lead to significant errors. It is also assumed that the SKA1 and MeerKAT dishes will have completely overlapping frequency bands, since the main point of our analysis is to compare the degradation on cosmological parameter constraints caused by 1/f noise, as opposed to the absolute accuracy on parameter forecasts. We therefore do not expect our main conclusions to be subject to the assumptions. The SKA1-MID will operate in two frequency bands, with Band 1 observing at 350 and 1050 MHz and Band 2 observing at 950–1750 MHz. Santos et al. (2015) and Bull et al. (2015) argued that compared to interferometric mode, SKA1-MID operating in the single dish (autocorrelation) mode benefits from a better sensitivity to HI at BAO scales, and an increased HI surface brightness temperature sensitivity. Therefore, we primarily concentrate on SKA1-MID Band 1 since it is the main band for SKA IM (SKA Red Book 2018), but we will also consider SKA1-MID Band 2 at 950–1410 MHz, with both operating in single dish (total power) mode. A frequency channel width of 20 MHz is assumed for both bands, which is the same as in Harper et al. (2018) for consistency. This gives a total number of 35 and 23 frequency channels for Band 1 and Band 2, respectively. We refer to Section 4.4 for more discussions on the choice of total number of frequency channels.

The receiver will have dual polarization, and the beam full-width half-maximum (FWHM) is calculated at the medium frequency of each band as

\[
\theta_{\text{FWHM}} = 1.2 \frac{\lambda}{D_{\text{dish}}},
\]

where \(\theta_{\text{FWHM}} = 1.77^\circ \) for Band 1 at \(v_{\text{med}} = 700\) MHz, and \(\theta_{\text{FWHM}} = 1.05^\circ \) for Band 2 at \(v_{\text{med}} = 1180\) MHz, respectively.

We follow SKA Red Book (2018) to calculate the system temperature of SKA1-MID as

\[
T_{\text{sys}} = T_{\text{rx}} + T_{\text{spl}} + T_{\text{CMB}} + T_{\text{pal}},
\]

where \(T_{\text{spl}} \approx 3\) K is the contribution from ‘spill-over’, and \(T_{\text{CMB}} \approx 2.73\) K is the CMB temperature. The contribution from our own Galaxy scales with frequency as

\[
T_{\text{gal}} = 25\,\text{K}(408\,\text{MHz}/v)^{0.75}.
\]

The receiver noise temperature \(T_{\text{rx}} \) is modelled using

\[
T_{\text{rx}} = 15\,\text{K} + 30\,\text{K} \left(\frac{v}{\text{GHz}} - 0.75 \right)^2
\]

for Band 1, and \(T_{\text{rx}} = 7.5\) K for Band 2. We further simplify the calculation for Band 2 by assuming a constant Galactic contribution of \(T_{\text{gal}} \approx 1.3\) K as it is subdominant at high frequencies, and yield a constant overall system temperature of \(T_{\text{sys}} = 15\) K for Band 2.

We follow SKA Red Book (2018) by assuming a 10,000 h integration time for the IM surveys with both bands, and a 20,000 and 5000 deg² sky coverage for Band 1 and Band 2, respectively. The instrumental and observing parameters of SKA1-MID Band 1 and Band 2 are summarized in Table 1.

3 FISHER FORECAST FORMALISM

We project constraints on cosmological parameters using the Fisher matrix technique (Fisher 1920), which is a quick and effective way to obtain cosmological forecasts. It assumes all parameters are Gaussian-distributed and no additional uncertainties unless they are incorporated. Forecasts from Fisher method give the optimal results expected from the upcoming experiment, and can guide the
The current redshift by the peculiar motion of galaxies (e.g. Hamilton 1998). The which encodes the 3.1 HI power spectrum without multiplication by the average HI brightness temperature, and the growth rate f (Challinor & Lewis 2011; Howlett et al. 2012). We assume a growth factor D (Dodelson 2003) The properties of 1/0 noise model used in our analysis are listed in the bottom of the table, with the default baseline values in bold.

<table>
<thead>
<tr>
<th>Instrumental parameters</th>
<th>Band 1</th>
<th>Band 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dish diameter, D_{dish} (m)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>No. beams, n_{beam} (dual pol.)</td>
<td>1×2</td>
<td></td>
</tr>
<tr>
<td>No. dishes, n_i</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Integration time, t_{obs}, (h)</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Channel width, Δv (MHz)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Beam resolution, θ_{FWHM} (deg)</td>
<td>1.77</td>
<td>1.05</td>
</tr>
<tr>
<td>System temperature, T_{sys} (K)</td>
<td>Equations (2) and (4)</td>
<td>15</td>
</tr>
<tr>
<td>Frequency range, Δv (MHz)</td>
<td>[350, 1050]</td>
<td>[950, 1410]</td>
</tr>
<tr>
<td>No. channels, N_{ch}</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>Redshift range, $[z_{\text{min}}, z_{\text{max}}]$</td>
<td>[0.35, 3]</td>
<td>[0.01, 0.5]</td>
</tr>
<tr>
<td>Survey coverage, Ω_{sur} (deg2)</td>
<td>20000</td>
<td>5000</td>
</tr>
</tbody>
</table>

1/f noise parameters

- slew speed, v_s (deg s$^{-1}$) [0.5, 1, 2]
- Knee frequency, ν_{knee} (Hz) [0.01, 0.1, 0.5, 1, 5, 10]
- Spectral index, α [1, 2]
- Correlation index, β [0.25, 0.5, 0.75, 1]

3.1 HI power spectrum

We adopt the dimensionless 2D angular power spectrum of HI signal without multiplication by the average HI brightness temperature, calculated by (e.g. Bonvin & Durrer 2011; Battye et al. 2013)

$$C_\ell^{\text{HI}}(z_i, z_j) = \left(\frac{2}{\pi} \right) \int dz (W_i(z)D(z)) dz' \left(W_j(z')D(z') \right)$$

$$\times \int dk k^2 P_\text{m}(k, z = 0) \left[b_{\text{HI}, j}(k \chi) - f(z_i) j'_j(k \chi) \right]$$

$$\times \left[b_{\text{HI}, j}(k \chi') - f(z_j) j'_j(k \chi') \right],$$

where the window function $W_i(z)$ of each bin is centred at redshift z_i with a bin width of Δz such that

$$W_i(z) = \begin{cases} 1, & z_i - \frac{\Delta z}{2} \leq z \leq z_i + \frac{\Delta z}{2}, \\ 0, & \text{otherwise.} \end{cases}$$

The growth factor $D(z)$ is calculated from the equation of (Dodelson 2003)

$$D'(a) = -\left(\frac{3 \pi}{2} \right) \frac{1}{2} \left(\frac{1}{E(a)} \right) D'(a) + \frac{3 \Omega_m}{2 a^2 E(a)} D(a),$$

$$E(a) = \frac{H(a)}{H_0},$$

and the growth rate $f(z)$ is the derivative of $D(z)$ such that

$$f(a) = \frac{d (\log D(a))}{d a},$$

which encodes the redshift-space-distortion effect (RSD) caused by the peculiar motion of galaxies (e.g. Hamilton 1998). The underlying matter power spectrum P_m at each wavenumber k and the current redshift $z = 0$ is computed using the CAMB software (Challinor & Lewis 2011; Howlett et al. 2012). We assume a redshift- and scale-independent HI bias at the fiducial value of $b_{\text{HI}} = 1$. The multipole ℓ is related to the wavenumber k through the Bessel function $j_{\ell}(k \chi)$ and its second derivative $j''_{\ell}(k \chi)$, where χ is the comoving distance defined by

$$\chi(z) = \int_0^z \frac{dz'}{H(z')}.$$

Fig. 1 shows the HI power spectrum (red), 1/f noise (blue), and total power spectrum (black) for SKA1-MID Band 1 at the redshift of $z = 0.5$ (solid) and $z = 2$ (dashed). The 1/f noise is calculated for the baseline set up of $[\beta = 0.5, \alpha = 1, f_{\text{knee}} = 1 \text{ Hz}, v_s = 1 \text{ deg s}^{-1}]$. Both thermal noise and 1/f noise have the beam correction applied.

3.2 Thermal noise power spectrum

Thermal noise defines the fundamental sensitivity of the instrument. It is the voltages generated by thermal agitations in the resistive components of the receiver. Thermal noise is calculated by the radiometer equation (Wilson, Rohlfs & Hennemeyer 2009)

$$\sigma_T = \frac{T_{\text{sys}}}{\sqrt{\delta v t_{\text{pix}}}};$$

where T_{sys} is the total system temperature introduced in equation (2), δv is the frequency channel width, and t_{pix} is the integration time per pixel such that

$$t_{\text{pix}} = t_{\text{obs}} \frac{n_{\text{beam}} n_i \Omega_{\text{pix}}}{\Omega_{\text{sur}}},$$

where $\Omega_{\text{pix}} \propto \theta_{\text{FWHM}}^2$ is the pixel area, and other parameters are taken from Table 1. The angular power spectrum of thermal noise is

$$N_\ell(z_i, z_j) = \left(\frac{4 \pi}{N_{\text{pix}}} \right) \sigma_T \sigma_T \delta_{i,j},$$

where N_{pix} is the number of pixels in the map, and σ_T is the thermal noise level for each frequency channel i given by equation (10). We will assume the thermal noise is uncorrelated in frequency such that $\delta_{i,j} = 1$ for $i = j$, and $\delta_{i,j} = 0$ otherwise. The dimensionless thermal
noise power spectrum is calculated by dividing σ_ν by the mean brightness temperature of 21 cm signal at each frequency channel, $T(z)$, with (Battye et al. 2013)

$$T(z) = 180 \Omega_{HI} h^2 \frac{(1+z)^2}{E(z)} \text{mK},$$

where Ω_{HI} is the density of 21 cm signal relative to the present-day critical density, and we assume a constant $\Omega_{HI} = 6.2 \times 10^{-4}$ as measured by Switzer et al. (2013) using GBT at $z \sim 0.8$.

One also needs to apply the beam correction $b_l(z_i)$ at each frequency channel v_i such that

$$b_l(z_i) = \exp \left(-\frac{1}{2} \ell^2 \sigma^2_b \right),$$

where $\sigma_b = \theta_b(z)/\sqrt{\ln 2}$ (e.g. Bull et al. 2015), and

$$\theta_b(z_i) = \theta_{FWHM}(v_{\text{mid}}) \frac{v_{\text{mid}}}{v_i},$$

with v_{mid} being the middle frequency of the survey. The effect of the beam on the power spectrum is to reduce the signal by a factor of b_l^2, which can be thought of as an increase in the noise by a factor of

$$B_l(z_i, z_j) = \exp \left[\ell^2 \sigma_b(z_i, z_j) \right].$$

Fig. 1 shows the expected thermal noise (green) at $z = 0.5$ (solid) and $z = 2$ (dashed), respectively, for SKA1-MID Band 1. In both cases, the thermal noise will be well below the H I signal (red) at most scales below $\ell \sim 100$, enabling the detection of the signal. Since the beam effect is included as an increase in the noise, above $\ell \sim 100$, it increases the thermal noise exponentially to surpass the signal.

3.3 1/f noise power spectrum

As introduced in Section 1, 1/f noise is induced by gain fluctuations in the receiver system and is independent of thermal noise. For a receiver system contaminated by both, overall power spectral density (PSD) is the quadratic addition of the two components such that (e.g. Seiffert et al. 2002; Bigot-Sazy et al. 2015; Harper et al. 2018)

$$\text{PSD}(f) = \sigma^2_T \left[1 + \left(\frac{f_{\text{knee}}}{f} \right)^\alpha \left(\frac{f}{f_{\text{obs}}} \right)^{1.4} \right],$$

where σ_T is the thermal noise level, with the first term in the bracket being the contribution from thermal noise and the second power-law term arising from 1/f noise. The knee frequency, f_{knee}, is the frequency where 1/f noise has the same amplitude as thermal noise. The spectral index of 1/f noise, $\alpha \approx 1 - 2$, is always positive so that 1/f noise component has more power on longer time-scales.

Harper et al. (2018) modified equation (17) to take into account correlations in the frequency direction such that

$$\text{PSD}(f, \omega) = \sigma^2_T \left[1 + \left(\frac{f_{\text{knee}}}{f} \right)^\alpha \left(\frac{\omega}{\omega_{\text{nn}}(f)} \right)^{1.4} \right],$$

where ω is $1/\nu$.

For N frequency channels and a channel width of $\delta \nu$, the values of ω range from the smallest, $\omega_0 = \frac{1}{\delta \nu} = \frac{1}{f_{\text{knee}}}$, to the largest, $\omega_{N-1} = \frac{1}{f_{\text{obs}}}$. The correlation index, β, describes the correlation of 1/f noise in frequency, and has a value between 0 and 1. For $\beta = 0$, the 1/f noise is completely correlated across all frequency channels and for $\beta = 1$, the 1/f noise is completely uncorrelated.

The correlation of 1/f noise in frequency space, $G(\nu)$, is given by the discrete inverse Fourier transform of the correlation in wavenumber space, such that

$$G(\nu_k) = \frac{1}{N} \sum_{n=0}^{N-1} \left(\frac{\omega_n}{\omega_{\text{nn}}(f)} \right)^{1.4} \exp \left(\frac{2 \pi i k \nu_n}{\nu_k} \right), \quad k \in [0, N-1],$$

which quantifies the correlation of the first frequency channel with other channels. In order to get the covariance matrix $G(\nu_i, \nu_j)$ of 1/f noise, we construct a Toeplitz matrix from $G(\nu)$, which has constant descending diagonals from left to right (e.g. Golub & van Loan 1996). The Toeplitz matrix has been used in, e.g. the Planck CMB map-making analysis to describe the 1/f noise covariance matrix (Ashdown et al. 2007). In our case, the Toeplitz matrix $G(\nu_i, \nu_j)$ is

$$G(\nu_i, \nu_j) = \begin{bmatrix} G(\nu_1) & G(\nu_2) & \ldots & G(\nu_{N-1}) & G(\nu_N) \\ G(\nu_2) & G(\nu_1) & \ldots & G(\nu_{N-2}) & G(\nu_{N-1}) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ G(\nu_{N-2}) & G(\nu_{N-3}) & \ldots & G(\nu_2) & G(\nu_1) \\ G(\nu_{N-1}) & G(\nu_{N-2}) & \ldots & G(\nu_1) & G(\nu_2) \end{bmatrix}$$

If the 1/f noise is completely correlated in frequency space, equation (20) is a matrix of ones and for completely uncorrelated 1/f noise, equation (20) is an identity matrix.

Harper et al. (2018) provided a semi-empirical angular power spectrum of the residual 1/f noise level in the reconstructed H I power spectrum after applying component separation. A high-pass filter was applied to the TOD in their simulation to remove correlations on very long time-scales, and we have tested that the bias on the mean H I signal due to this filter has negligible impact on our results since large scales are dominated by the cosmic variance.

The Harper et al. (2018) model was derived by first combining the constituent parts that are known already, with no correlation between frequency channels ($\beta = 1$). The amplitude of the residual 1/f noise is defined as

$$A = \left(\frac{T_{\text{sys}}}{21 \text{K}} \right) \left(\frac{f_{\text{knee}}}{1 \text{Hz}} \right)^u \left(\frac{\delta v}{20 \text{MHz}} \right)^{-1} \left(\frac{n_t}{200} \right)^{-1} \left(\frac{T_{\text{obs}}}{30 \text{days}} \right)^{-1} \left(\frac{\Omega_{\text{sat}}}{20500 \text{deg}^2} \right)^2 \mu K^2,$$

where T_{sys} is the system temperature, f_{knee} is the knee frequency, δv is the frequency channel width, n_t is the number of telescopes, T_{obs} is the integration time in unit of days, and Ω_{sat} is the survey sky coverage. They then fitted a model to take into account the dependence of the residual 1/f noise angular power spectrum on the spectral index α and the telescope slew speed v_t. The best-fitting model was determined as

$$\log_{10} \left[\frac{F(\nu, \beta = 1)}{\mu K^2} \right] = \log_{10} \left(\frac{A}{\mu K^2} \right) + a [\alpha - 1]$$

$$+ b \sqrt{\alpha} \log_{10} \left(\frac{v_t}{\text{deg s}^{-1}} \right) - \sqrt{\alpha} \log_{10} (\ell),$$

where a, b, and c are constants with the best-fitting values of 1.5, -1.5 and 0.5, respectively. The 1/f noise frequency correlations,
described by the correlation index β, will have an impact on the residual $1/f$ noise angular power spectrum bias. From their particular simulations, Harper et al. (2018) measured the mean fractional change in this bias to determine the fractional decrease in F_ℓ due to β. The model that provides a reasonable fit to their simulated data was determined as
\[
\frac{F_\ell(v, \beta)}{F_\ell(v, \beta = 1)} = d \sin(2\pi \beta) + \beta,
\]
with $d = -0.16$. Note that if it is necessary to filter TOD in order to make the mean unbiased, extra corrections may become required. In particular, the model is specific to the scan strategy and component separation method used in their analysis, and may not be valid if things are done differently. Here we adopt their model and compute the $1/f$ noise for each frequency channel as the product of the $1/f$ noise covariance matrix $G(v_i, v_j)$ and the angular power spectrum $F_\ell(v, \beta)$ such that
\[
F_\ell(v_i, v_j, \beta) = G(v_i, v_j) \sqrt{F_\ell(v_i, \beta) F_\ell(v_j, \beta)}.
\]

Throughout the paper, unless otherwise stated, we adopt the same baseline setup of $1/f$ noise at $\beta = 0.5, \alpha = 1$, $f_{\text{sec}} = 1$ Hz, $v_i = 1$ deg$^{-1}$ as in Harper et al. (2018). We vary the value of each $1/f$ noise parameter in Section 5.2, to investigate their impact on cosmological parameters. The ranges of these parameters are listed in Table 1. Fig. 1 shows the $1/f$ noise (blue) using the baseline setup. Note that the $1/f$ noise has a bigger impact at large scales as can be verified from equation (22), and decreases with multipoles. At $\ell \gtrsim 100$, the beam effect increases the noise level to surpass the signal. For $z = 0.5$ (solid), the $1/f$ noise is below the H I signal (red) without the beam effect, enabling a detection of the signal, but nevertheless higher than the thermal noise (green). The total observed power spectrum (solid black) in this case is dominated primarily by H I signal. At $z = 2$ (dashed), the $1/f$ noise is significantly higher than both H I signal (red) and thermal noise (green), where no detection of signal can be made. The total observed power spectrum (dashed black) in this case is always dominated by $1/f$ noise. Based on Fig. 1, $1/f$ noise could have a big impact on the H I signal detection, and thus cannot be ignored.

3.4 Fisher matrix and cosmological parameters

The Fisher matrix for projecting cosmological parameter constraints is constructed by (e.g. Dodelson 2003; Asorey et al. 2012; Hall & Challinor 2012)
\[
M_{ij} = \sum_{\ell=2}^{\ell_{\text{max}}} \sum_{X',Y'} \frac{1}{\text{cov}(XX',YY')} \left[C_{XX'}^{XY} \right]_{\ell}^{-1} \frac{\partial C_{YY}^{XY}}{\partial \theta_j},
\]
where $C_{XX'}^{XY}$ and C_{YY}^{XY} are the H I power spectra (equation 5) at different redshift bins denoted by $X, X', Y,$ and Y. θ is a set of cosmological parameters that parameterize the H I power spectrum. The covariance matrix of the measured power spectrum, $\text{cov}(XX', YY')$, is
\[
\text{cov}(XX', YY')_{\ell} = \frac{1}{(2\ell + 1) f_{\text{sky}}} \left(\hat{C}_{\ell}^{XX'} \hat{C}_{\ell}^{X'Y'} + \hat{C}_{\ell}^{XY'} \hat{C}_{\ell}^{XY} \right),
\]
where f_{sky} is the fractional sky coverage of the survey, and \hat{C}_{ℓ} is the measured H I power spectrum including noise such that
\[
\hat{C}_{\ell}(z_i, z_j) = C_{\ell}^{H I}(z_i, z_j) + N_{\ell}(z_i, z_j) B_{\ell}(z_i, z_j),
\]
including thermal noise only, and
\[
\hat{C}_{\ell}(z_i, z_j) = C_{\ell}^{H I}(z_i, z_j) + [N_{\ell}(z_i, z_j) + F_{\ell}(z_i, z_j)] B_{\ell}(z_i, z_j),
\]
including both thermal noise and $1/f$ noise.

We will use the CPL model (Chevallier & Polarski 2001; Linder 2003) to parametrize the background equation of state for the dark sector as
\[
w(a) = w_0 + w_a (1 - a),
\]
and therefore the set of cosmological parameters that we will use is
\[
\theta = [\Omega_b h^2, \Omega_c h^2, w_0, w_a, h, n_s, \log(10^{10} A_s), n_{\text{run}}].
\]
The fiducial values of these parameters are adopted from Olivari et al. (2018) for consistency and comparison. The first row of Table 2 lists the fiducial values we use. Here we adopt an optimistic H I bias model with $b_{\text{HI}} = 1$ in order to understand the impact of $1/f$ noise from the simplest scenario, since the focus of this paper is to study $1/f$ noise instead of the complexity of astrophysical model. Nevertheless, for a more realistic scale- and redshift-dependent H I bias model (e.g. Bull et al. 2015; Sarkar, Bharadwaj & Ananthpindika 2016), a bigger impact might be expected due to the variations of $1/f$ noise in angular scales and redshift (see equation 22 and Section 5.1).

The partial derivative of H I power spectrum with respect to each cosmological parameter in equation (25) is calculated numerically by varying each parameter with a step of $\pm \Delta \theta$. The value of $\Delta \theta$ should not be too large, so that it miscalculates the derivative, nor too small, so that it introduces numerical noise. We will use $\Delta \theta = 0.5$ per cent $\times \theta$ and we have checked that the derivatives in this case are stable. Each parameter is marginalized over other parameters, and their uncertainties are calculated from the inverse of the Fisher matrix in equation (25).

The BAO scale measured from the H I power spectrum is sensitive to the Hubble rate $H(z)$ in the radial direction, and to the angular diameter distance $D_A(z)$ in the transverse direction, which both provide information revealing the expansion history of the Universe. Thus we can constrain $H(z)$ and $D_A(z)$ at three redshifts by a coordinate transformation from $\Omega_b h^2$, w_0, and w_a. The parameter transformation is performed through a transformation matrix T such that (Coe 2009)
\[
[F'] = [T]^{-1} [T F] [T]^T,
\]
where $[F']$ is the new Fisher matrix after the parameter transformation, with new parameters $\theta' = (\theta_1', \theta_2', \theta_3', \ldots)$, and $[F]$ is the old Fisher matrix with old parameters $\theta = (\theta_1, \theta_2, \theta_3, \ldots)$. The transformation matrix T is calculated through the partial derivative of the old parameters to the new parameters that $T_{ij} = \frac{\partial \theta_i}{\partial \theta_j}$, and T^T is the transpose of the transformation matrix.

The parameter sets after the transformation in these two cases are
\[
\theta' = \{H(z_0), H(z_1), H(z_2), \Omega_c h^2, h, n_s, \log(10^{10} A_s), b_{\text{HI}}\},
\]
and
\[
\theta' = \{D_A(z_0), D_A(z_1), D_A(z_2), \Omega_c h^2, h, n_s, \log(10^{10} A_s), b_{\text{HI}}\}.
\]

Note that our constraints on $H(z)$ and $D_A(z)$ are limited to three redshift values through the parameter transformation method. However, this limitation does not void the main conclusions of this paper regarding the impact of $1/f$ noise. In each case, the parameter is marginalized over as a free parameter in each redshift bin. We choose three particular redshift bins at $z = [0.5, 1.5, 2.5]$ for Band 1.
Impact 1/f noise impact on cosmological parameters

Table 2. The cosmological parameters (1st row) and their projected uncertainties from Planck likelihood (2nd row) using COSMOMC. SKA Band 1 alone (3rd row), SKA Band 2 alone (4th row), SKA Band 1+Planck (5th row), SKA Band 2+Planck (6th row), SKA Band 1+Band 2+Planck (7th row), SKA Band 1 without RSD component (8th row), and Planck+SKA Band 1 without RSD component (8th row). The square brackets in the 1st row are the assumed central values of cosmological parameters. We include only thermal noise in the SKA IM noise calculation without 1/f noise. The parameters which are significantly improved by the inclusion of SKA IM are highlighted in bold. The numbers in brackets give the degradation factor of the corresponding parameter constraint after excluding the cross-correlation signal between frequency channels in the H1 power spectrum calculation.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>$\Omega_b h^2$</th>
<th>$\Omega_c h^2$</th>
<th>w_0</th>
<th>w_a</th>
<th>h</th>
<th>log($10^{10}A_s$)</th>
<th>n_s</th>
<th>b_{HI}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[0.02224]</td>
<td>[0.1198]</td>
<td>[−1.00]</td>
<td>[0.00]</td>
<td>[0.6727]</td>
<td>[3.096]</td>
<td>[0.9641]</td>
<td>[1.00]</td>
</tr>
<tr>
<td>Planck</td>
<td>±0.00015</td>
<td>±0.0016</td>
<td>±0.45</td>
<td>...</td>
<td>±0.13</td>
<td>±0.039</td>
<td>±0.0046</td>
<td>...</td>
</tr>
<tr>
<td>Band 1 alone</td>
<td>±0.0037</td>
<td>±0.013</td>
<td>±0.061</td>
<td>±0.23</td>
<td>±0.035</td>
<td>±0.11</td>
<td>±0.038</td>
<td>±0.033</td>
</tr>
<tr>
<td></td>
<td>(2.9)</td>
<td>(3.0)</td>
<td>(1.4)</td>
<td>(1.9)</td>
<td>(2.9)</td>
<td>(2.4)</td>
<td>(2.3)</td>
<td>(2.1)</td>
</tr>
<tr>
<td>Band 2 alone</td>
<td>±0.0039</td>
<td>±0.0085</td>
<td>±0.15</td>
<td>±0.79</td>
<td>±0.023</td>
<td>±0.30</td>
<td>±0.014</td>
<td>±0.19</td>
</tr>
<tr>
<td></td>
<td>(1.7)</td>
<td>(2.3)</td>
<td>(1.5)</td>
<td>(1.5)</td>
<td>(2.6)</td>
<td>(1.7)</td>
<td>(1.7)</td>
<td>(1.5)</td>
</tr>
<tr>
<td>Band 1+Planck</td>
<td>±0.00012</td>
<td>±0.00092</td>
<td>±0.036</td>
<td>±0.12</td>
<td>±0.0095</td>
<td>±0.032</td>
<td>±0.0038</td>
<td>±0.017</td>
</tr>
<tr>
<td></td>
<td>(1.2)</td>
<td>(1.5)</td>
<td>(1.3)</td>
<td>(1.3)</td>
<td>(1.3)</td>
<td>(1.1)</td>
<td>(1.1)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Band 2+Planck</td>
<td>±0.00013</td>
<td>±0.0010</td>
<td>±0.032</td>
<td>±0.17</td>
<td>±0.0031</td>
<td>±0.038</td>
<td>±0.0037</td>
<td>±0.022</td>
</tr>
<tr>
<td></td>
<td>(1.1)</td>
<td>(1.4)</td>
<td>(1.6)</td>
<td>(1.3)</td>
<td>(1.0)</td>
<td>(1.0)</td>
<td>(1.1)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Band 1+Band 2+Planck</td>
<td>±0.00012</td>
<td>±0.00081</td>
<td>±0.024</td>
<td>±0.099</td>
<td>±0.0024</td>
<td>±0.030</td>
<td>±0.0034</td>
<td>±0.016</td>
</tr>
<tr>
<td>noRSD</td>
<td>±0.0073</td>
<td>±0.025</td>
<td>±0.20</td>
<td>±0.58</td>
<td>±0.068</td>
<td>...</td>
<td>±0.065</td>
<td>...</td>
</tr>
<tr>
<td>noRSD+Planck</td>
<td>±0.00014</td>
<td>±0.0013</td>
<td>±0.084</td>
<td>±0.25</td>
<td>±0.014</td>
<td>±0.039</td>
<td>±0.0043</td>
<td>±0.020</td>
</tr>
</tbody>
</table>

and $z = [0.05, 0.2, 0.4]$ for Band 2, because they properly sample the shape and amplitude of the partial derivative $\frac{\partial}{\partial \theta^i}$, encountered during the coordinate transformation with $\theta_i \in [\Omega_b h^2, w_0, w_a]$ and $\theta_j \in [H(z), D_s(z)]$. We have tested other redshift bins under the same selection criteria, which all give consistent results.

The linear growth rate $f(z)$, characterizing the RSD effect, can be used for testing alternative theories of gravity, which alters galaxy peculiar velocities with respect to the General Relativity prediction (e.g. Jain & Zhang 2008; Baker, Ferreira & Skordis 2014). Therefore it is also useful to project constrains on $f(z)$, and understand the impact of 1/f noise. We forecast constraints on $f\sigma_8(z) = f(z)\sigma_8 D(z)$ with 10 equally spaced frequency bins expanding over the full band of SKA1-MID Band 1 and Band 2, respectively. We assume a piece-wise linear parametrization of $f\sigma_8(z)$ at the 10 frequency bins. We vary the amplitude of each bin with $\Delta f\sigma_8(z) = 0.5$ per cent $\times f\sigma_8(z)$, and calculate the derivative of the H1 spectrum with respect to $f\sigma_8(z)$ numerically from there. The combination of $f(z)\sigma_8 D(z)$ takes into account the degeneracy between $f(z), D(z)$, and σ_8. The parameter set in this case is

$$\theta' = [f\sigma_8(z_1), f\sigma_8(z_2), \ldots, f\sigma_8(z_{10})].$$

Each of the 10 $f\sigma_8(z)$ is treated as an independent parameter and marginalized over, with all other base parameters fixed.

3.5 Planck prior

Although SKA1-MID IM survey is promising in terms of probing the dark sector, it will find it difficult to constrain all parameters by itself. Combining data sets from other probes can break parameter degeneracies and improve precision. The high-precision measurements of the CMB from Planck already provide very tight constraints on the base parameters of ΛCDM model. Therefore it is also useful to project constrains on $f(z)$, and understand the impact of 1/f noise. We forecast constraints on $f\sigma_8(z) = f(z)\sigma_8 D(z)$ with 10 equally spaced frequency bins expanding over the full band of SKA1-MID Band 1 and Band 2, respectively. We assume a piece-wise linear parametrization of $f\sigma_8(z)$ at the 10 frequency bins. We vary the amplitude of each bin with $\Delta f\sigma_8(z) = 0.5$ per cent $\times f\sigma_8(z)$, and calculate the derivative of the H1 spectrum with respect to $f\sigma_8(z)$ numerically from there. The combination of $f(z)\sigma_8 D(z)$ takes into account the degeneracy between $f(z), D(z)$, and σ_8. The parameter set in this case is

$$\theta' = [f\sigma_8(z_1), f\sigma_8(z_2), \ldots, f\sigma_8(z_{10})].$$

Each of the 10 $f\sigma_8(z)$ is treated as an independent parameter and marginalized over, with all other base parameters fixed.

4 PROJECTED COSMOLOGICAL PARAMETER CONSTRAINTS FOR THERMAL NOISE ONLY

In this section, we present the results of cosmological parameter constraints from the Fisher matrix analysis, where only thermal noise is included without 1/f noise. We present the results in Section 4.1. We investigate the importance of accurate H1 power spectrum calculation, in terms of the redshift space-distortion component (Section 4.2), cross-frequency components (Section 4.3), and the total number of frequency channels (Section 4.4).

4.1 SKA1-MID projections

In this section, we present projected constraints on the eight cosmological parameters (equation 30) using the Fisher matrix method described in Section 3.4 for the case of thermal noise only. We do this for both the SKA1-MID Band 1 and Band 2 surveys, operating in single dish mode, with the survey parameters given in Table 1. The projected uncertainties on the cosmological parameters are presented in Table 2 along with the Planck priors used in our analysis (Section 3.5).

SKA1-MID results are presented in the third and fourth rows of Table 2. The constraints on w_0 and h are significantly improved compared to Planck. In particular, SKA1-MID Band 1 alone has the potential to constrain w_0 with ≈ 6 per cent accuracy, and h with ≈ 3 per cent accuracy. This is because the H1 power spectrum measured by SKA IM over a range of redshifts breaks the angular
Our results show that under the assumption of completely Gaussian white noise without systematics or foreground contamination, an intensity mapping survey with SKA1-MID combined with Planck has the potential to tightly constrain cosmological parameters under the CPL model, nourishing the dark energy study.

4.2 Importance of redshift-space-distortions

From equation (5), we see that the RSD component, encoded in the $f(z)$ term, is the key to breaking the complete degeneracy between A_s and b_{HI}. We would expect no constraint on A_s or b_{HI} in the absence of the RSD component in an IM-only survey. In order to verify this, we artificially set the $f(z)$ term to be zero and recalculate parameter constraints from SKA1-MID Band 1. We only present results for Band 1, but find the same results for Band 2, and our main conclusions are independent of the exact band analysed. Therefore, throughout the paper, unless otherwise stated, we will present results for Band 1 only. The results without the RSD component are given in the last two rows of Table 2, with infinite uncertainties on A_s or b_{HI}. Adding the Planck prior provides a constraint on A_s and thus enables a measurement on b_{HI}.

Our results confirm that the RSD component is essential to obtain a constraint on A_s and b_{HI}. Therefore, the small uncertainties on A_s and b_{HI} given by Olivari et al. (2018) are a result of the inclusion of a Planck prior, since the RSD component was neglected in their H$_I$ power spectrum calculation.

4.3 Cross-frequency contribution

In order to understand the importance of the cross-correlation H_I signal between frequency channels, we have performed an analysis only including the autocorrelation signal for each frequency channel in the H_I power spectrum. We expect that the parameter uncertainties will degrade, compared with those obtained using the full power spectrum calculation, due to the loss of information.

In Table 2, we present (in brackets) the degradation factor of each parameter below its uncertainty obtained using the full power spectrum calculation. The degradation factor for each cosmological parameter is defined as the ratio of its uncertainty without the cross-correlation signal to that with the full power spectrum calculation. We see that the cross-correlation signal is more important to Band 1 than in Band 2 since Band 1 has more frequency bins and thus suffers more loss when the cross-correlation signal is excluded. In the case where the Planck prior is added, the exclusion of the cross-correlation signal makes less difference. These results are consistent with the expectation, and confirm that one shall adopt the full H$_I$ power spectrum calculation wherever possible for a more accurate forecast.

4.4 Impact of number of frequency channels

We have chosen a specific number of frequency bins, N_{bin}, for our analysis: 35 in the case of Band 1 and 22 for Band 2. In principle, we could have used any value but as N_{bin} decreases, there is less information from the line-of-sight component of the power spectrum (e.g. information on the RSD component as discussed in Section 4.2). However, as N_{bin} increases, the amount of information gained will reduce dramatically beyond some critical value. This is because the system noise increases $\propto \sqrt{N_{bin}}$ and thus $\propto \sqrt{N_{bin}}$. Besides, computational requirements (the calculations of spectrum scale $\propto N_{bin}^2$) prefer one to choose the lowest possible value. In...
In order to understand the impact of $1/f$ noise on cosmological parameter constraints, we first define a degradation factor, δA_3, as the ratio of the total power spectrum divided by $N_{\text{bin}} = 5$. Since we have shown in Table 2 that w_o, w_a, h, and b_{111} are those parameters most strongly constrained by the IM data, hereafter we will only present results for these parameters. The left-hand panel in Fig. 3 is from Band 1 alone, and the right-hand panel is from Planck + Band 1. In both cases, we observe significant improvement on parameter constraints from Planck to $N_{\text{bin}} = 25$, but little additional information beyond $N_{\text{bin}} = 25$ because of the increased noise. The parameter constraints in the case of Planck + Band 1 are less strongly impacted by varying N_{bin} than Band 1 alone.

5 IMPACT OF 1/ƒ NOISE

In this section, we investigate the impact of $1/f$ noise on intensity mapping, adopting the semi-empirical $1/f$ noise model introduced in Section 3.3 based on Harper et al. (2018). We quantify the consequent degradation caused by $1/f$ noise on the power spectrum (Section 5.1), the impact of different $1/f$ noise parameters (Section 5.2), and the consequent degradation on the constraints on $w_o - w_a$ (Section 5.3), $H(z)$ and $D_A(z)$ (Section 5.4), and $f(z)$ (Section 5.5).

5.1 Power spectrum degradation

In order to understand the impact of $1/f$ noise on power spectrum measurements, we define a degradation factor, $\delta \ell(z_i, z_j)$, as the ratio of the total power spectrum with $1/f$ noise (equation 28) to that without $1/f$ noise (equation 27), given by

$$\delta \ell(z_i, z_j) = \frac{C_{\ell}^{H_1}(z_i, z_j) + [N(z_i, z_j) + F_1(z_i, z_j)]B_{\ell}(z_i, z_j)}{C_{\ell}^{H_1}(z_i, z_j) + N(z_i, z_j)B_{\ell}(z_i, z_j)}$$

We will only compute $\delta \ell(z_i, z_j)$ for autocorrelation frequency channels, i.e., $i = j$, since $i \neq j$ has $N(z_i, z_j) = 0$ by assumption, and a possible $C_{\ell}^{H_1}(z_i, z_j) = 0$ that results in an infinite $\delta \ell(z_i, z_j)$.

The power spectrum degradation factor $\delta \ell$ is plotted as a function of redshift and angular multipole in Fig. 4 for SKA1-MID Band 1 (left-hand panel) and Band 2 (right-hand panel), respectively. We adopt the baseline $1/f$ noise setup at $\beta = 0.5$, $\alpha = 1$, $f_{\text{knee}} = 1$ Hz, $v_i = 1$ deg s$^{-1}$, for both bands, it can be seen that the degradation factor has large variations in both redshift and angular scale. Typically, it increases towards high redshift, because the H_1 signal is weaker at higher redshift, and thus more affected by $1/f$ noise. This can be confirmed from Fig. 1, where the H_1 signal at $z = 0.5$ dominates up to the beam scale, but is completely dominated by the $1/f$ noise at $z = 2$. Vertically, the degradation factor increases towards the beam scale ($\ell \sim 200$), where the beam correction increases noise levels exponentially.

It is worth noting from Fig. 4 that most of the constraining power comes from a ‘window’ at low redshift ($z \lesssim 1$) below beam scales ($\ell \lesssim 100$), at the presence of $1/f$ noise. The exact size of this ‘window’ and its degradation factor may vary with the $1/f$ noise level, observing frequency and is subject to the specific scan strategy and component separation analysis assumed. For SKA1-MID Band 1, the power spectrum measurement is degraded by a factor of $\delta \approx$ 2 at $z \lesssim 1.5$ and $\ell \lesssim 100$. SKA1-MID Band 2 has a smaller degradation factor of $\delta \approx$ 1.3 at $z < 0.5$ and $\ell \lesssim 200$ due to observing at a lower redshift.

Our results show that $1/f$ noise can significantly degrade power spectrum detection, especially at high redshift. The large variation of the degradation in redshift is a big challenge to the measurement of redshift-dependent quantities, such as the growth rate $f(z)$. Therefore, one can no longer neglect $1/f$ noise for intensity mapping experiment.

5.2 Impact of $1/f$ noise parameters

In order to understand the impact of $1/f$ noise on cosmological parameters, we vary the $1/f$ noise spectral index α, correlation index β, knee frequency f_{knee}, and telescope slew speed v_i, respectively. We calculate the ratio of the uncertainties on cosmological parameters relative to the case with $\beta = 0$, which is the totally correlated $1/f$ noise that can be completely removed by component separation (Harper et al. 2018) assuming perfect calibration and no additional systematic errors.

The top two panels in Fig. 5 present the results for various β values for SKA1-MID Band 1 alone (left-hand panel) and Band 1 + Planck (right-hand panel). The solid curves are the results with $\alpha = 1$, and the dashed curves are those with $\alpha = 2$, with f_{knee} and v_i fixed at the baseline values of 1 Hz and 1 deg s$^{-1}$, respectively. It can be seen that all cases in both panels have increased uncertainties towards a larger value of β. By comparing $\alpha = 1$ (solid) with $\alpha = 2$ (dashed), the spectral index α increases uncertainties significantly. By comparing Band 1 alone (left) with Band 1 + Planck (right), the Planck prior compensates for some degradation by constraining other base parameters and breaking degeneracies.

In the middle two panels, we investigate the impact of varying f_{knee}, fixing other parameters at the baseline values of $\beta = 0.5$, $v_i = 1$ deg s$^{-1}$, and $\alpha = 1$. It can be seen that the fractional uncertainties increase significantly as f_{knee} increases. In order to have a negligible impact on cosmological parameter constraints, we deduce that one requires a $f_{\text{knee}} < 0.1$ Hz. The results from Band 1 + Planck (right) are less affected by $1/f$ noise than those from Band 1 alone (left).

Finally we study the impact of telescope slew speed by varying v_i in the bottom panels, fixing other parameters at the baseline values of $\beta = 0.5$, $f_{\text{knee}} = 1$ Hz, and $\alpha = 1$. The fractional uncertainties in this case decrease with increased slew speed as one would expect. A high slew speed of 2 deg s$^{-1}$ is desired if possible, in order to reduce the impact of $1/f$ noise. Again, the addition of Planck prior mitigates part of the degradation from $1/f$ noise.

In consistence with Harper et al. (2018), our results show that a minimized spectral index ($\alpha < 2$) is critical, with a potential degradation by a factor of \gtrsim10 otherwise. A low knee frequency ($f_{\text{knee}} < 0.5$ Hz), a higher telescope slew speed, and a correlation in frequency channels are desired to diminish the effect of $1/f$ noise, although this is subject to the specific assumptions from the adopted model. It is worth noting that even with the Planck prior, the degradation on h, w_o, w_a, and b_{111} cannot be completely mitigated since they are primarily constrained by IM data, which emphasizes the importance of controlling $1/f$ noise for IM experiments.

Nevertheless, the specifications of SKA1 and MeerKAT instrumental design are potentially adequate to meet the criteria to minimize $1/f$ noise. Cremonini et al. (2018) specified that under the wide-area-scanning mode, SKA1 dishes will allow a maximum scanning speed of 1 deg s$^{-1}$ in elevation and 1 deg s$^{-1}$ in azimuth. MeerKAT dishes will allow a maximum of 1 deg s$^{-1}$ in elevation and 2 deg s$^{-1}$ in azimuth. Besides, we have analysed a small sample of...
test data obtained from MeerKAT commissioning team to measure the total receiver noise from 10 antennas in L-band pointing at the South Celestial Pole. The data show highly correlated 1/f noise between frequency channels, which can potentially be removed through component separation steps.

5.3 Dark energy equation of state

We now focus on investigating the impact of 1/f noise on the dark sector equation of state parameters w_0 and w_a. We present the projected joint $w_0 - w_a$ 1 σ confidence ellipses in Fig. 6, marginalized over other cosmological parameters. We consider three cases with effectively no (completely removed) 1/f noise ($\beta = 0$), partially correlated 1/f noise ($\beta = 0.5$), and totally uncorrelated 1/f noise ($\beta = 1$), with other parameters fixed at the baseline values of $v_t = 1 \text{ deg s}^{-1}$, $f_k = 1 \text{ Hz}$, and $\alpha = 1$. The left-hand panels are for SKA alone and the right-hand panels are for SKA+Planck, with Band 1 in solid and Band 2 in dashed, respectively.

For $\beta = 0$, the $w_0 - w_a$ contour from Band 1+Planck has a similar degenerate direction to that for Band 2+Planck, although the constraint from Band 1 alone is tighter than that from Band 2 alone. This can also be confirmed from Table 2 and Fig. 2, where the addition of IM data to Planck breaks the angular diameter distance degeneracy in almost the same way for Band 1 and Band 2. Our projected joint $w_0 - w_a$ constraints are ~ 50 per cent better than that from Bull (2016) and the reasons can be attributed to: (i)
Impact 1/α noise impact on cosmological parameters

Figure 5. The uncertainties on cosmological parameters relative to that obtained with effectively no 1/α noise (β = 0) as a function of the 1/α noise correlation index β (top), the knee frequency f_{knee} (middle), and the telescope slew speed v_t (bottom). The left-hand panels are obtained from SKA1-MID Band 1 alone, and the right-hand panels are from Band 1 + Planck. In each case, the other 1/α noise parameters are set to the default baseline values, apart from the one that is varied. We investigate the impact of the spectral slope $α$ in the top two panels with solid curves at $α = 1$ and dashed curves at $α = 2$. The uncertainties increase towards higher values of $α$, $β$, and f_{knee}, but lower values of v_t. Note that we use the same y-axis range vertically to emphasize the biggest impact from $α$ and f_{knee}.
Bull (2016) adopted different cosmological parameter set with 11 cosmological parameters while we consider eight parameters; (ii) We include more frequency channels which brings finer information along the line of sight.

From areas of the contours in Fig. 6, we see that the joint \(w_0 - w_a \) constraint from Band 1 alone (left-hand panel; solid) is degraded by a factor of \(\approx 2.5 \) with \(\beta = 0.5 \), and \(\approx 4 \) with \(\beta = 1 \). The contours of Band 1 + Planck (right-hand panel; solid) are less affected by 1/f noise, and are degraded by a factor of \(\approx 1.5 \) with \(\beta = 0.5 \) and \(\approx 2 \) with \(\beta = 1 \). Band 2 is also less affected by 1/f noise than Band 1, thanks to its lower redshift where H I signal is stronger. For Band 2 alone (left-hand panel; dashed), the joint \(w_0 - w_a \) constraint is degraded by \(\approx 1.5 \) with \(\beta = 0.5 \), and \(\approx 2 \) with \(\beta = 1 \). Band 2 + Planck (right-hand panel; dashed) is much less affected, where the uncertainty is degraded by less than a factor of \(\approx 1.3 \) even with \(\beta = 1 \).

The degradation on the joint \(w_0 - w_a \) plane is consistent with the degradation factor on the power spectrum. In Section 5.1, for Band 1 with \(\beta = 0.5 \), we see a power spectrum degradation factor of \(\approx 2 \) at \(z \lesssim 1.5 \) and \(\ell \lesssim 100 \), where most of the signal detection comes from, comparable with the factor of \(\approx 2.5 \) degradation on the joint \(w_0 - w_a \) plane. Similarly, for Band 2 with \(\beta = 0.5 \), the factor of \(\approx 1.5 \) degradation on \(w_0 - w_a \) is consistent with the power spectrum factor of \(\approx 1.3 \) at \(z < 0.5 \) and \(\ell \lesssim 200 \) where most of the constraining power comes from.

In summary, Band 1 is more affected by 1/f noise than Band 2 due to observing at higher redshift. With a semicorrelated 1/f noise at \(\beta = 0.5 \), a degradation by a factor of \(\approx 1.5 \) and \(\lesssim 1.3 \) is expected on the joint \(w_0 - w_a \) plane for Band 1 + Planck and Band 2 + Planck, respectively.

5.4 Hubble parameter and angular diameter distance

To study the impact of 1/f noise on the expansion history of the Universe, in this section we present projected constraints on the Hubble parameter \(H(z) \) and angular diameter distance \(D_A(z) \) through parameter transformation described in Section 3.4 at three redshift bins of Band 1, and Band 2 respectively. We calculate the uncertainties, \(\sigma_{H(z)} \) (green) and \(\sigma_{D_A(z)} \) (red), relative to the fiducial values of \(H(z) \) and \(D_A(z) \) at each redshift bin, as shown in Fig. 7 for SKA alone (left-hand panel) and SKA + Planck (right-hand panel).

In the upper subplot of each panel, we plot the uncertainties for both Band 1 (circle) and Band 2 (triangle) for three scenarios with completely removed 1/f noise (\(\beta = 0 \), solid), partially correlated 1/f noise (\(\beta = 0.5 \), dashed), and completely uncorrelated 1/f noise (\(\beta = 1 \), dotted). The lower subplot gives the corresponding degradation ratio, defined as the ratio of the uncertainty with \(\beta = 0.5 \) (\(\beta = 1 \)) to that with \(\beta = 0 \).

It can be seen from the upper subplots of Fig. 7 that the uncertainties increase with redshift for Band 2, but reaches its largest value at the middle bin (\(z = 1.5 \)) for Band 1. The broad peak centred at \(z \sim 1.5 \) is due to the derivatives of \(H(z) \) and \(D_A(z) \) with respect to \(w_0 \) and \(w_a \) having their peak value at \(z \sim 1.5 \) and being decreasing afterwards. Note that our projections on \(H(z) \) and \(D_A(z) \) are subject to the model assumed in the parameter transformation, which is a very different approach to that in SKA Red Book (2018) who treated \(H(z) \) and \(D_A(z) \) independently in each bin. This is a very different prior on the allowed values and therefore we expect very different results from the two completely different approaches, even assuming the same instrumental and observing parameters without 1/f noise. We stress that the main point of our analysis is to compare the degradation on cosmological parameter constraints caused by residual 1/f noise compared to the case with \(\beta = 0 \), as opposed to the absolute constraint on the parameters. The degradation ratio between different levels of residual 1/f noise, as shown in the lower subplot of Fig. 7, is expected to be still representative, were the same methodology adopted as in SKA Red Book (2018).

Typically, the 1/f noise for \(\beta = 0.5 \) degrades the constraint on \(H(z) \) and \(D_A(z) \) by a factor of \(\approx 2.5 \) for Band 1 alone and \(\approx 1.4 \) for Band 2 alone. A completely uncorrelated 1/f noise at \(\beta = 1 \) will further degrade the results by a factor of \(\approx 4 \) for Band 1 and Band 2, respectively. The addition of the Planck prior will mitigate the impact of 1/f noise so that with \(\beta = 0.5 \) as an example, the degradation ratio will be reduced to a factor of \(\approx 1.2 \) for both bands.

5.5 Growth rate

We project constraints on the linear growth rate \(f \sigma_8(z) = f(z) \sigma_8 D(z) \) in this section as introduced in Section 3.4. Fig. 8 shows the fractional uncertainties of \(f \sigma_8(z) \) for both Band 1 and Band 2, at three 1/f noise scenarios \(\beta = 0, \beta = 0.5, \) and \(\beta = 1 \). For each
band, there are 10 equally spaced frequency bins of $f_{\sigma8}(z)$ over the whole band width, where each bin is treated as a free parameter and marginalized over, with all other base parameters fixed. We do not include Planck priors in this case. The lower subplot of Fig. 8 gives the degradation ratio of the fractional uncertainty with $\beta = 0.5$ ($\beta = 1$) to that with $\beta = 0$.

From the upper subplot of Fig. 8, our constraints on $f_{\sigma8}(z)$ are worse than those in SKA Red Book (2018). This is because while we have a limited $N_{\text{bin}} = 35$ and $N_{\text{bin}} = 23$ for Band 1 and Band 2, respectively, SKA Red Book (2018) calculated the H I power spectrum in the wavenumber, k, space, and thus had a finer resolution and more information along the line-of-sight direction, yielding smaller uncertainties. Again, we clarify that the main point of our paper is to compare results at different residual 1/f noise levels. The absolute value of uncertainties subjecting to specific analysis is thus not critical in our case.

In the lower subplot, with the 1/f noise at $\beta = 0.5$, the uncertainties on $f_{\sigma8}(z)$ are degraded by a factor of ≈ 4.8 and ≈ 1.3 for Band 1 and Band 2, respectively. A larger β value will lead to more significant degradation. These are consistent with the results for $H(z)$ and $D_s(z)$.

6 CONCLUSIONS AND DISCUSSIONS

In this paper, we forecast the constraints on cosmological parameters using the Fisher matrix method for SKA1-MID Band 1 and Band 2 in the single dish mode, taking into account the impact of 1/f noise using an empirical model from Harper et al. (2018).

We begin with the scenario where only thermal noise is present. With a full H I power spectrum calculation, including cross-correlation frequency bins and redshift-space-distortion contributions, the projected uncertainties are 4 per cent on w_0, 1 per cent on h, 2 per cent on b_{H1}, using Band 1+Planck, and 3 per cent on w_{00}, 0.5 per cent on h, 2 per cent on b_{H1}, using Band 2+Planck. These results would be degraded by ~ 20 per cent on average if one were to exclude contributions from cross-correlation frequency bins. We have tested that excluding the RSD component from the power spectrum calculation will prevent simultaneous measurements on A_s and b_{H1} without the Planck prior. We also found that the parameter constraints improve with increased number of frequency bins thanks to a finer redshift resolution. However, after a certain point, the expensive computing cost from increasing N_{bin} brings little improvement on the results due to increased thermal noise with narrower channel width.

We study the impact of 1/f noise adopting the semi-empirical 1/f noise model from Harper et al. (2018), which quantifies the expected 1/f noise level after applying component separation method at the map level. The residual 1/f noise spectrum is a function of the frequency correlation index β, the spectral index α, the knee frequency f_{knee}, and the telescope slow speed v_{t}. The 1/f noise affects the power spectrum detection more significantly at higher redshift due to a weaker H I signal, and smaller scales due to the effect of the beam. We find that most constraining power comes from $z \lesssim 1$ and $\ell \lesssim 100$ at the presence of 1/f noise. A baseline semicorrelated 1/f noise at $\beta = 0.5$ degrades the total measured power spectrum by a factor of ≈ 3 for Band 1 and ≈ 1.3 for Band 2.
We focus on quantifying the impact of 1/f noise on cosmological parameters which IM is very sensitive to, and in particular, the joint constraint on $w_{0} - w_{a}$, the Hubble rate $H(z)$, and the angular diameter distance $D_{A}(z)$. Typically, the baseline 1/f noise at $\beta = 0.5$ degrades these parameter uncertainties by a factor of ≈ 2.5 for Band 1 and ≈ 1.5 for Band 2. This is consistent with the degradation seen in the total power spectrum at the regions where most of the detections come from. The addition of the Planck prior compensates the loss caused by 1/f noise and reduces the degradation to ≈ 50 per cent for Band 1+Planck and ≈ 20 per cent for Band 2+Planck. The growth rate $f(z)$ is more affected by 1/f noise at Band 1 with a degradation factor of ≈ 3, compared to Band 2 where there is negligible degradation. In order to minimize the impact, a minimized 1/f noise spectral slope ($\alpha < -2$) and a low knee frequency ($f_{\text{knee}} < 0.5$ Hz) is critical. A correlation in frequency ($\beta \rightarrow 0$) and a large telescope slew speed ($v_{s} \rightarrow 2$ deg s$^{-1}$) is also favoured.

Our analysis has shown that it is important to control 1/f noise for IM experiments. In particular, we find that 1/f noise can increase the absolute noise level by ~ 2 orders of magnitude at certain angular scales and redshifts (see Fig. 1). It can degrade constraints on the growth rate $f(z)$, which is especially valuable in terms of testing General Relativity (e.g. Jain & Zhang 2008; Baker et al. 2014). However, even with the representative baseline 1/f noise analysed in the paper, IM experiments can still yield decent parameter constraints without too much degradation, although instrumental designs without a proper consideration of 1/f noise can potentially result in a much larger degradation factor than quoted here. We hereby assert that one can no longer ignore the impact of 1/f noise on IM experiments.

We remind the reader that our conclusions are subject to the 1/f noise model introduced in Harper et al. (2018), under their assumed scan strategy, component separation analysis, and perfect calibration without additional systematic errors. In practice, one may apply additional calibration or filtering techniques in the time domain to further reduce 1/f noise.

ACKNOWLEDGEMENTS

TC acknowledges support from the STFC Innovation Placement scheme, and the Overseas Research Scholarship from the School of Physics and Astronomy, The University of Manchester. RAB ad CD acknowledge support from an STFC Consolidated Grant (ST/P000649/1). CD also acknowledges an ERC Starting (Consolidator) Grant (no. 307209).

REFERENCES

Chen X., 2012, Int. J. Mod. Phys., 12, 256
Eastwood M. W. et al., 2018, AJ, 156, 32
Parsons A. R. et al., 2010, AJ, 139, 1468
Santos M. et al., 2015, Advancing Astrophysics with the Square Kilometre Array (AASKA14). p. 19

This paper has been typeset from a TeX/LATEX file prepared by the author.

MNRAS 491, 4254–4266 (2020)