Arylation using sulfonamides: Phenylacetamide synthesis through tandem acylation-Smiles rearrangement

Helen L. Barlow, Pauline T. G. Rabet, Alastair Durie, Tim Evans, Michael F. Greaney*

School of Chemistry, University of Manchester, Oxford Road, Manchester, UK, M13 9PL, UK

ABSTRACT: A range of electron-poor and heterocyclic sulfonamides react with phenylacetamide chlorides to produce benzhydryl derivatives in a single step. The reaction proceeds via tandem amide bond formation – Dohmori-Smiles rearrangement under simple conditions of aqueous base. In the case of o-nosylamides further reaction takes place at the nitro group to yield indazoles.

Aryl and heteroaryl structures are fundamental to natural products and man-made molecules, and are frequently synthesized using stoichiometric organometallics and precious transition metal catalysts. These methods, while effective and hugely influential, are costly and environmentally unsustainable, making metal-free arylation methods a key objective for future strategies in synthetic chemistry. We are interested in harnessing simple aryl sulfonamides as metal-free arylating agents, through the process set out in Scheme 1. The nitrogen atom acts as a nucleophilic trap for an electrophilic coupling partner, a benzyne in this example, generating an incipient carbanion (3) that triggers a 1,5-desulfonylative Smiles rearrangement. Overall, the process repositions a cheap and readily available building block as both an arylating and aminating agent, critical transformations in the pharmaceutical industry, whilst proceeding without recourse to metal reagents.

We have previously shown that sulfonamides can react with sp-electrophiles for the synthesis of biaryl and enaminate products, and were interested in extending the chemistry to sp² components. Trapping a ketene, for example, with a sulfonamide 1, would generate an enolate that could rearrange via Smiles reaction to afford phenylacetamide derivatives. This process would use sulfonamides to install aryl groups at sp² centres, producing phenylacetamides, a fundamental pharmacophore in medicinal chemistry. The Smiles rearrangement of acyl-sulfonamide enolates akin to 8 has precedent in seminal studies from Dohmori and co-workers in the 1950s, representing the earliest examples of carbon nucleophiles participating in Smiles processes. Our previous work indicates that electron poor sulfonamides are required for anionic desulfonylative Smiles processes, in line with literature precedent of an S_N_Ar-type mechanism that proceeds through a Meisenheimer intermediate (e.g. 4 in Scheme 1).

Accordingly, we began our studies using p-nosylamide 1a, and screened reaction with excess phenylacetyl (10a) and propionyl chloride (10b) under ketene-forming conditions in terms of solvent and temperature (Table 1). Unfortunately, no Smiles reaction could be observed, with the simple acylated product being identified as the main product in each case (entries 1-7). A further trial with the diketene acetone adduct at 120 °C, to generate acylketene in situ, likewise yielded the acylated sulfonamide only. It appeared that the 1,5-desulfonylative Smiles reaction, in contrast to some 1,4 processes on related enolate systems, requires more basic conditions to proceed. This proved to be the case, as a survey of simple inorganic bases identified aq NaOH as enabling the two step procedure (entry 8). Using aqueous THF as solvent, p-nosylsulfonamide reacted with phenylacetyl chloride at 80 °C to give the Smiles product 9a in a very good yield.
With reaction conditions in hand we examined substrate scope in terms of aryl halide and sulfonamide component (Scheme 2). The reaction was successful for a variety of phenacetyl chlorides, affording the benzhydryl primary amides 9a – 9o in generally good yield. The reaction could be demonstrated on a 1 mmol scale for the synthesis of 9a, proceeding in an excellent 89% yield. Some restrictions were noted in terms of substitution at the enolic position of the acyl component, with di-substitution at this position shutting down the Smiles process. Turning to the sulfonamide partner, the reaction tolerated N-substitution (e.g. 9h and 9i) without problem, but not N,N-disubstitution. Electron poor p-nosylamides were generally productive, and we were pleased to see that heterocyclic sulfonamides such as pyrimidyl (9m), pyrimidyl (9n) and benzothiazoyl (9o) underwent successful reaction. Arylation of sp³ centres with these valuable heteroarenes moieties under simple metal-free conditions is a particular strength of the approach, as it represents a challenging transformation for contemporary transition-metal catalyzed methods.

Screening o-nosylamide 1e in the reaction led to the unexpected formation of 3-phenyl-1H-indazole 12a in 54% yield (Scheme 3A). The reaction appears general for phenylacetyl chlorides, with the electron rich and electron poor substrates giving the indazoles 12a – 12f in moderate yields.

Table 1. Reaction optimization

<table>
<thead>
<tr>
<th>entry</th>
<th>R<sup>1</sup></th>
<th>base</th>
<th>solvent</th>
<th>T (°C)</th>
<th>product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ph</td>
<td>iPr<sub>2</sub>NEt (2.0)</td>
<td>DCM</td>
<td>r.t.</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>proton sponge (1.1)</td>
<td>DCM</td>
<td>40</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Ph</td>
<td>iPr<sub>2</sub>NEt (2.0)</td>
<td>DCM</td>
<td>r.t.</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Ph</td>
<td>iPr<sub>2</sub>NEt (2.0)</td>
<td>THF</td>
<td>70</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>CH<sub>3</sub></td>
<td>iPr<sub>2</sub>NEt (2.0)</td>
<td>THF</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>CH<sub>3</sub></td>
<td>iPr<sub>2</sub>NEt (2.0)</td>
<td>toluene</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>CH<sub>3</sub></td>
<td>proton sponge (1.1)</td>
<td>THF</td>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>8<sup>b</sup></td>
<td>Ph</td>
<td>NaOH (aq)</td>
<td>THF</td>
<td>80</td>
<td>9a (87%)<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Reaction conditions: 1 (1 equiv) in solvent at 0 °C, then the base was added, followed by 10 (1 equiv), stirred at T °C for 16 h, 5 equiv of 10, 1 h^c isolated yield.

^b Reaction conditions: 1 (1 equiv) in THF at 0 °C. Dropwise addition of aq NaOH followed by 10 (5 equiv), then heat to 120°C in sealed vial for 1 hr.

Assembly of this important heterocycle from sulfonamides, in a single step, has not previously been reported and clearly involves a significant degree of bond reorganization. There is, however, some limited precedent in work from Dohmori and Sundberg who observed indazole synthesis from Smiles products via cinnoline N-oxides. A feasible pathway is shown in Scheme 3B, whereby the sulfonamide undergoes acylative Smiles rearrangement to afford 9p, which can then undergo intramolecular N-N bond formation to form the cinnoline N-Oxide 13. From here, basic hydrolysis of the cinnoline amide group and dehydration would form the diazonium...
intermediate 14, and intramolecular amination of enolates analogous to 14 is a well-described method for synthesizing indazoles. A final decarboxylation gives the product 12.

Scheme 3. 1H-Indazole synthesis

A: 1H-Indazole Synthesis

\[
\begin{align*}
\text{Scheme 3} & \quad 1H-\text{Indazole Synthesis}^{a,b} \\
\text{General conditions as Scheme 2.} & \quad \text{Isolated yields.}
\end{align*}
\]

To conclude, we have described a new application of sulfonamides that captures their amphiphilic character as electrophilic arylating and nucleophilic aminating agents. The transformation is based on classical observations from Dohmori and co-workers on the facility of desulfonylative Smiles processes to mimic enolate arylation chemistry. In contrast to conventional enolate arylations, however, the process requires no metal catalysts and proceeds under very simple conditions. In the case of o-nosylamides, a 3-aryl-1H-indazole synthesis has been developed that involves substantial changes in bond connectivity to create an important heteroarene moiety from cheap and readily available starting materials.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data for all new compounds are available in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Michael.greaney@manchester.ac.uk

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

We thank the EPSRC for funding.

REFERENCES

7 For a recent discussion of concerted S_NAr reactions, see: Rohrbach, S.; Smith, A. J.; Pang, J. H.; Poole, D. L.; Tuttle, T.;

