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Optimal Design of Flexible Heat-Integrated Crude Oil Distillation Systems 
Dauda Ibrahim  

The University of Manchester  

2017 

Abstract ɭPhD Thesis 

The need for petroleum refineries to process different types of crude oil in order to 

maximise prof it margin and to meet demand for products, calls for flexibility in the 

design and optimisation of crude oil distillation systems comprising distillation units 

and the heat recovery network. Crude oil distillation is a complex, capital - and energy-

intensiv e process. The large number of degrees of freedom (column structure and 

operating conditions) and complex interactions within the system make the design and 

optimisation of crude oil distillation system a highly challenging task. This work 

develops new methodologies for the design of crude oil distillation systems that 

process a single crude oil feedstock and multiple crude oil feedstocks. 

In this work, the crude oil distillation unit is modelled using a rigorous tray -by-tray 

model where the number of trays  active in each section is also a design degree of 

freedom. The model is embedded in an optimisation framework, together with a heat 

recovery model (applying pinch analysis), for design of an energy -efficient and cost-

effective distillation system. The opt imisation framework addresses both structural and 

operational degrees of freedom of the system, capturing the trade-off between capital 

and energy costs, and accounting for heat integration. The distillation model is built in 

Aspen HYSYS, while the optimisation is carried out in MatLab using a genetic 

algorithm, where data is exchanged during process simulation and optimisation.  

To overcome the shortcomings of the rigorous distillation model in the context of 

system optimisation, surrogate models based on artificial neural networks (ANN) and 

a support vector machine (SVM) are developed and applied in the optimisation 

framework. The ANN model simulates the crude oil distillation unit, while the SVM 

partitions the search space, increasing the likelihood that the optimised solution will 

converge when simulated using a rigorous model. The SVM helps to reduce 

computational effort  by focusing the search on potentially feasible solutions. Both the 

ANN and SVM are fitted to results of multiple rigorous simulations o f the distillation 

unit.  

The proposed surrogate modelling approach is extended to take into account multiple 

crude oil feedstocks in the design of the distillation unit. The distillation column 

models for multiple crude oils and heat recovery model are em bedded in a two -stage 

optimisation framework, in which a hybrid stochastic -deterministic approach is 

applied to optimise structural variables and distillation column operating conditions. 

The overall objective is to maximise net profit while meeting produc t quality (and flow 

rate) constraints.  

The capabilities of the proposed methodologies are illustrated using industrially -

relevant case studies. Results indicate that the used of surrogate model instead of 

rigorous models reduces computational time without  compromising solution accuracy 

and optimality. The design approach to account for flexible operation is shown to 

identify effectively design alternatives that are economically viable and operable over 

the range of crude oil feedstocks.  
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Chapter 1   Introduction 

1.1 Context and overview of research problem 

Petroleum refineries are faced with uncertainties in terms of  future quality and 

quantity of feedstocks and products (Castelo et al., 2010). To cope with these 

uncertainties, refinery processes must be flexible enough to adapt to various operating 

scenarios arising from, for example, changes in crude oil feedstock and products, and 

changes in throughput. Flexibility is defined as the inherent ability of refinery process 

to establish feasible operation (e.g., meeting product specifications) over a wide range 

of operating scenarios. 

Process flexibility plays an important  role in maximising refinery profit margins ( i.e., 

the total amount by which revenue from the sales of refined petroleum products 

exceeds operating cost). Changes in market prices of crude oil and refined petroleum 

products can provide opportunities to improve profit margins if the refinery processes 

have the capability of processing various types of crude oil feedstocks to produce 

market-driven products. In general, flexible operation in a petroleum refinery starts in  

the crude oil distillation systems (Spangler et al., 2006). 

Crude oil distillation is one of the primary processes in a petroleum refinery. The crude 

oil distillation system consists of a crude oil distillation unit (also known as column ) 

and a heat recovery network (also known as preheat train) where the crude oil 

feedstock is heated and partially vaporised (see Figure 1.1). The crude oil distillation 

unit, as shown in Figure 1.1, has a complicated configuration, comprising a main 

column equipped with pump -arounds and side-strippers, and a condenser. The pump-

arounds provide local reflux and create heat recovery opportunities, while the side -

strippers remove light components from side draws.  
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Figure 1.1 Typical refinery crude oil d istillation system.  

Crude oil distillation is a complex, capital - and energy-intensive operation. The overall 

system configuration typically consists of a furnace which consumes fuel equivalent to 

1-2% of the entire crude oil being processed (Liebmann et al., 1998; Szklo and Schaeffer, 

2007). This fuel combustion is associated with high CO 2 emissions and high operating 

costs. Due to the scale of the system, even a small energy savings can lead to significant 

economic and environmental benefits. Heat integration is implemented to enhance 

energy efficiency of the system by exchanging heat between hot streams that require 

cooling and cold streams that require heating.  

The main purpose of the crude oil distilla tion system is to perform the initial 

ÚÌ×ÈÙÈÛÐÖÕɯÖÍɯÊÙÜËÌɯÖÐÓɯÍÌÌËÚÛÖÊÒÚɯÐÕÛÖɯÍÙÈÊÛÐÖÕÚɯÖÙɯȿÊÜÛÚȮɀ which are either blended into 

marketable products or sold as feedstocks for the petrochemical industries. Crude oil is 

a complex mixture of different  classes of hydrocarbons (see Chapter 2). Each type of 

crude oil has unique physical and chemical properties , which primarily depends on the 

source of the crude oil (Jones, 1995). Figure 1.2 illustrates product yield obtainable from 

three varieties of crude oil feedstocks, namely, Maya, Azeri light,  and Brent, with 
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different properties, e.g., the density of the three crude oils are 924.8 kg mɬ3, 850.9 kg 

mɬ3, and 833.3 kg mɬ3 respectively. 

 

 
 

Figure 1.2 Crude oil yield for heavy, medium and light crude (Cooper and Mackenzie, 

2013). 

In general, light crude oils (density less than 859 kg m-3) are less dense than medium 

(density between 859 kg m-3 and 921 kg m-3) and heavy crude oils (density greater than 

921 kg m-3), and contain a significant amount  of low -boiling hydrocarbon compounds 

(Favennec, 2001). Each type of crude oil is a unique mixture of various hydrocarbon 

compounds (paraffin, naphthenes, and aromatics), and therefore the crude oil 

distillatio n column should be design (fired heating, stripping steam flow rate, number 

of trays in column sections etc.) to accommodate changes in feedstock properties.  

The variation in feedstock properties can have a significant impact on design and 

operation of crude oil distillation systems. For example, if a system is designed based 

on a specific type of crude oil, changes in feedstock properties can impact on the 

system performance, such as product qualities and flow rate, fired heating 

requirements, net profit and CO2 emissions. Thus, to avoid economic penalties 

resulting from products not meeting market requirements and failing to capitalise on 
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the cheapest crude oil in the market, the crude oil distillation unit and the associated 

heat recovery network should be designed to operate satisfactorily over a wide range 

of operating scenarios, while ensuring product quality and flow rates are within their 

set values. 

1.2 Grassroots design of heat-integrated crude oil distillation 

systems 

In general, the process of design can be broadly classified into two groups based on 

ËÌÚÐÎÕɯÖÉÑÌÊÛÐÝÌÚȮɯÕÈÔÌÓàȮɯÎÙÈÚÚÙÖÖÛÚɯȹÈÓÚÖɯÒÕÖÞÕɯÈÚɯȿÎÙÌÌÕÍÐÌÓËɯËÌÚÐÎÕɀȺɯÈÕËɯÙÌÛÙÖÍÐÛɯ

design. In grassroots design, the aim is to design a new process at minimum cost 

and/or maximum profit, while ret rofit design involves making structural (e.g. 

installing new equipment, replacing an existing equipment, repiping etc.) and/or 

operational (e.g. changes in temperature, pressure, throughput etc.) modifications to an 

existing process in order to achieve a desired objective, for example, increased 

throughputs, increased capacity, and reduction in energy consumption and emissions 

(Smith, 2005).  

Long and Lee (2017) estimated that 70-80% of capital investment project in the process 

industries is retrofit projects, while the remaining constitute grassroots projects. 

Retrofit design is more complicated than grassroots design as the retrofit design space 

is more restricted, and there are fewer degrees of freedom (Westerberg, 2004).  

Although many similarities exist between retrofit and grassroots design 

methodologies, there are still many fundamental differences between the two design 

approaches, for example, each approach requires a unique model (Grossmann et al., 

1987; Westerberg, 2004).  Moreover, some aspect of retrofit design requires the 

knowledge, understanding, skills and insights derived from gra ssroots design 

(Westerberg, 2004). This work focuses on grassroots design of a crude distillation 

system that can process multiple crude oil feedstocks. Heat integration is taken into 

account using pinch analysis (based on grand composite curve). The grand composite 

curve is an important  tool for process heat integration. The curve is constructed using 

process stream data, consisting of stream supply and target temperatures and enthalpy 
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change. The grand composite curve is a useful tool for calculating energy targets 

(minimum hot and cold utilities) and fo r utility selection for lowest cost (Smith, 2005). 

The crude oil distillation unit is strongly interconnected  with the associated heat 

recovery network through pump -around duties, condenser duty, and product coolers. 

Changes in the design and operation of the atmospheric distillation unit affect the 

design and operation of the heat recovery network and vice versa.   

Typically, grassroots design aims to select the structural (feed tray location, pump -

around and side-stripper location, n umber of trays in each section of the column) and 

operational variables (feed temperature, pump -around duties and temperature drops, 

stripping steam flow rates and reflux ratio) of the crude oil distillation unit, while 

simultaneously selecting the configu ration of the associated heat recovery network and 

the area requirements of the heat exchangers. Through effective design strategies, the 

synergy between the two subsystems can be exploited to achieve an overall good 

design performance (e.g. total annualised cost, energy consumption and profit).  

The design of crude oil distillation systems involves selecting the structure and 

operating conditions of the distillation unit and the heat recovery network, and has the 

additional complexity that the overall syst em must be capable of processing multiple 

crude oil feedstocks and crude oil blends. That is, the crude oil distillation system 

should accommodate variations in crude oil feedstocks and operating conditions.  A 

flexible crude oil distillation system must be  capable of operating satisfactorily over a 

wide  range of feedstocks.  

The complex nature of the crude oil distillation system, including the strong interaction 

between the unit and the heat recovery network  poses a very challenging design and 

optimisation  problem. In addition , there are many degrees of freedom in the system, 

namely, operating conditions and structural variables of the crude oil distillation unit 

and the heat recovery network. Furthermore, these degrees of freedom need to be 

selected while taking into account all the crude oil feedstocks and/or  crude oil blends 

that need to be processed. 
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In the past, design of crude oil distillation unit and the associated heat recovery 

network (preheat train) were carried out in separate steps, i.e., the distillation column 

was designed first, followed by the heat recovery network (Nelson, 1958; Watkins, 

1979; Jones, 1995). These design approaches applied heuristic rules, empirical 

correlations, and experience to design the complex crude oil distillation uni t. However, 

the design approaches proposed by Nelson (1958), Watkins (1979) and Jones (1995) 

require trial and error and do not account for interactions within the system.  

To overcome the above limitations, several researchers focused on design of integrated 

crude oil distillation systems, taking into account the interacti ons between the 

distillation column and the heat recovery network. This design strategy leads to an 

energy-efficient design compared to earlier methods. In this regard,  Liebmann and co-

workers (Liebmann, 1996; Liebmann et al., 1998) integrate rigorous column simulation 

and pinch analysis to design the complex column. Their approach evolves the design in 

a stepwise manner, taking into account maximum heat recovery calculated using the 

grand composite curve. Based on these heat recovery targets/minimum util ity targets, 

design modifications that improve separation and reduce energy consumption are 

proposed and adopted. A limitation of this work is that it requires iteration, and the 

distillation column is not optimised .    

To avoid the use of rigorous  model, Sharma et al. (1999) propose a stepwise design 

strategy that combines simple energy balance and column grand composite curve 

(Dhole and Buckingham, 1994). First, energy balance is carried out across several 

sections of the complex column to generate temperature-enthalpy data. The data are 

used to construct a column grand composite curve. Based on this curve, the maximum 

amount of energy that can be recovered without affecting separation is calculated. 

However, the number of trays in column section is fixed. Also, the design procedure is 

based on some rules of thumb and optimisation is not attempted.  

To develop an optimisation -based design approach, Suphanit (1999) proposed 

simplified (based on FenskeɬUnderwoodɬGilliland) models for crude oil distillation 

columns and apply pinch analysis in an optimisation framework to identify the crude 
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oil distillat ion column structure and operating conditions that minimise the total  

annualised cost. Rastogi (2006) improved the simplified model of Suphanit (1999) in 

order to  account for pump -around locations and pressure drop. A non -linear 

optimisation technique (successive quadratic programming ) is applied to optimise the 

column structure and operating conditions. Chen (2008) further modifies t he model of 

Rastogi (2006) to allow for alternative pump -around locations (e.g., above the top side 

draw). The model is implemented in an optimisation framework, together with a heat 

exchanger network model, to simultaneously design the column an d the heat 

exchanger network. In addition , Chen (2008) accounts for temperature-dependent 

properties of crude oil and product streams undergoing phase change. Despite being 

easier to handle numeri cally, simplified  column models have the limitation that they 

tend to lead to less accurate results compared with rigorous models. Furthermore, they 

are not versatile with respect to  the column configuration.  

The methodologies presented so far focused on the design of crude oil distillation 

systems that separates a specific type of crude oil feedstock to produce intermediate 

products of specified quality. However, a significant change from the design 

conditions (e.g. change in crude oil feedstock) can impact on the overall system 

performance (energy consumption, profit, etc.) or even lead to infeasible operation (i.e. 

failure of the design to satisfy separation requirements, such as product quality).  For 

ÌßÈÔ×ÓÌȮɯ ȿɀÓÐÎÏÛɀɀɯ ÊÙÜËÌɯ ÖÐÓɯ ÊÖÕÛÈÐÕÚɯ Èɯ ÓÈÙÎÌɯ ÈÔÖÜÕÛɯof low -boiling hydrocarbon 

ÊÖÔ×ÖÜÕËÚɯÊÖÔ×ÈÙÌËɯÞÐÛÏɯɁÔÌËÐÜÔɂɯÈÕËɯɁÏÌÈÝàɂɯÊÙÜËÌɯÖÐÓÚȰɯÛÏÜÚɯÐÛɯÐÚɯÌß×ÌÊÛÌËɯÛÏÈÛɯ

the feed inlet temperature for the light crude oil will be lower than that of medium and 

heavy crude oils, which implies that the light crude oil w ill require less preheating than 

the medium and heavy crude oils.  

To design a flexible crude oil distillation system that can process multiple crude oil 

feedstocks and/or blend of crude oils, it is crucial to determine the structural and 

operational variab les of the system that can operate over different crude oil feedstock. 

For example, Bagajewicz and Ji (2001) propose a design approach that combines 

rigorous simulation and pinch anlysis based on heat demand -supply diagram. Their 

approach applies heuristic rules to  determine feasible operating conditions for light, 
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medium and heavy crud e oils using a fixed crude oil distillation column structure. 

Nonetheless, the trade-offs between capital and energy cost are not considered.  

Furthermore, the resulting crude oil distillation system is not optimised.  

To optimise the system, More et al. (2010) develop an optimisation -based approach for 

the design of crude oil distillation system that processes multiple crude oil s and blend 

of crude oils. Their methodology consist of two stages. In stage 1, the crude oil 

distillation system is modelled rigorously in Aspen Plus. In stage 2, an optimisation 

framework is formulated, with a profit related objective function and constr aints on 

product quality. The variables optimised include feed flow rate, steam flow rates, and 

product flow rates . The nonlinear optimisation tool embedded in the commercial 

process simulator is used to optimise the system. Although the standard optimisat ion 

tool used in this work can facilitate the search for better solutions compared to the 

approach presented by Bagajewicz and Ji (2001), the method of More et al. (2010) also 

has some drawbacks; for example, structural variables such as number of trays in each 

column section and the locations of feed tray, pump -arounds and side-strippers are not 

optimised. Furthermore, heat integration is not taken into account during the 

optimisation, although the heat dutie s are used to calculate operating cost. 

Overall, early approaches (Nelson, 1958; Watkins, 1979; Jones, 1995) for the design of 

crude oil distillation system have not taken into account heat integration. Integrated 

design methods (Liebmann et al., 1998; Sharma et al., 1999) do consider heat 

integration, but the distillation column is not optimised. The optimisation -based 

approach integrates simpl ified  column model and pinch analysis (Suphanit, 1999) / 

heat exchanger network (Rastogi, 2006; Chen, 2008) to design an optimised system. 

However, simplified  models may lead to an unrealistic estimate of the distillati on 

column performance. Again, the approaches above focused on the design of crude oil 

distillation system that processes one type of crude oil feedstock. While methodologies 

(Bagajewicz and Ji, 2001; More et al., 2010) for the design of flexible crude oil 

distillation system that process multiple crude oils and blends of crude oil are 

available, they are subject to many limitations such as lack of consideration of relevant 

design variables as well as trade-offs between capital and energy cost. 
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To develop a systematic approach for optimisation -based design of crude oil 

distillation system, there is a need for computationally efficient and accurate 

distillation column models that can be used to s imulate alternative designs. The 

models should be capable of representing the complex behavior of the system and the 

relevant degrees of freedom (structural and operational variables). Rigorous and 

surrogate models are available for simulating crude oil di stillation systems. If properly 

modelled, rigorous models can produce an accurate estimate of the distillation column 

performance as compared with surrogate models. However, rigorous models can be 

computationally demanding. On the other hand, surrogate mod els are relatively 

simple and are less computationally demanding. This feature makes surrogate models 

more suitable for implementation in an optimisation framework to design the crude oil 

distillation system.    

Methodologies for modelling of crude oil dis tillation unit based on rigorous models 

(Bagajewicz and Ji, 2001; Basak et al., 2002; More et al., 2010) and surrogate models 

(López C. et al., 2013; Ochoa-Estopier and Jobson, 2015a; Osuolale and Zhang, 2017) 

have been developed and presented in literature. However, none of the methods have 

incorporate structural decisions (e.g. number of trays in column sections) as a design 

variable. Thus, the resulting column model cann ot be applicable for optimisation -based 

design of crude oil distillation system. While structural variables have been 

implemented in modelling of simple column using rigorous models (Caballero et al., 

2005), this approach can not be directly applied to design a heat-integrated crude oil 

distillation systems, due to the complicated nature of the unit configuration and large 

number of degrees of freedom. 

1.3 Aims and objectives of this work 

As discussed in Sections 1.1 and 1.2, there is a lack of systematic methodologies for the 

design of flexible heat-integrated crude oil distillation systems that process multiple 

crude oil feedstocks.  
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This research work aims to develop a new systematic approach for the design of 

flexible crude oil distillation systems, to address the limitations of existing design 

methods. The method applies an optimisation -based approach to design the crude oil 

distillation unit, while simu ltaneously considering heat recovery using pinch analysis, 

in a unified framework. The optimisation framework aims to select both column 

structural and operating degrees of freedom while taking into account multiple crude 

oil feedstocks, product quality co nstraints, capital investment and operating costs. The 

objectives to achieve these aims are to: 

1. Develop an appropriate modelling  approach for crude oil distillation units that 

takes into account both structural and operational degrees of freedom of the 

distillation column. The approach explores the use of both rigorous and 

surrogate models.  

2. Propose a design methodology that incorporates rigorous simulation model 

and pinch analysis in a unified framework to facilitate the design of crude oil 

distillation sy stems.  

3. Adapt the design methodology of Objective 2 to apply surrogate distillation 

column models, considering both column performance and definition of region 

of appropriate operating conditions.  

4. Develop an optimisation framework that incorporates suitab le distillation 

column models and pinch analysis to support the design of flexible crude oil 

distillation systems.  

5. Propose an effective solution strategy to facilitate the search for flexible, cost-

effective, and energy-efficient design option.  

6. Demonstrate the capabilities of the proposed frameworks using industrially -

relevant case studies. 

1.4 Contributions of this work 

The following outlines the contributions of the work presented in this thesis : 

1. Design of crude oil distillation units using rigorous simul ation model.  
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i. A new approach for representing crude oil distillation column 

(superstructure) using rigorous simulation model is introduced. The 

proposed distillation column superstructure takes into account both 

structural and operational degrees of freedom of the crude oil 

distillation unit. When the distillation column superstructure is 

implemented in an optimisation framework, it is possible to optimise 

both structural (number of trays in column sections) and operational 

(pump -around duty and temperature drops, feed inlet temperature, 

stripping steam flow rate, and reflux ratio) degrees of freedom of the 

system, thus allowing the inherent trade -offs between capital and 

energy cost to be fully captured, leading to an economically viable 

design alternative. 

 

2. Design of crude oil distillation units using surrogate distillation column model.  

i. A surrogate model of the crude oil distillation unit is developed using 

artificial neural networks, taking into account both structural and 

operational degrees of freedom. 

ii.  A feasibility constraint based on support vector machine is proposed in 

this work. The constraint is applied to rule out infeasible design 

alternatives from the solution space, thus improving computational 

efforts and increasing the likelihood that an optim al design would be 

feasible when simulated on a rigorous model.  

iii.  Methodology that allows the optimisation of structural and operational 

degrees of freedom of crude oil distillation unit using surrogate model is 

proposed, considering feasibility constraint, heat integration and 

economic model . 

 

3. Design of flexible crude oil distillation unit that process multiple feedstocks.  

i. Data sampling and surrogate modelling approaches for crude oil 

distillation unit that processes multiple crude oil feedstocks are 

proposed. 
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ii.  A two -stage optimisation framework is proposed to facilitate the design 

of flexible crude oil distillation unit. The framework incorporates the 

surrogate column models, heat recovery models, feasibility constraints 

and economic model.  

iii.  A hybrid stochast ic-deterministic strategy is introduced to aid the 

search for flexible and cost-effective design alternatives within the 

solution space.  

 

4. Scenario-based design of flexible chemical processes. 

i. A scenario-based approach for the design of chemical processes in 

which some parameters and/or input variables are subject to variability 

is proposed. Compared to the strategy presented in Contribution 3, this 

approach is capable of handling, effectively, large number of operating 

scenarios (e.g. many crude oil feedstocks to be processed). 

ii.  A decomposition strategy that breaks the complex multi -scenario design 

problem into sub -problems is introduced. The sub-problems include: (i) 

defining and characterizing process parameters that are subject to 

variability, (ii) design  for each scenario, (iii) evaluating each design 

within the parameter space, and (iv) selecting the most economic and 

flexible design option.  

iii.  Multi -criteria decision-making tool is introduced for selection of optimal 

design among many alternatives, taking into account both quantitative 

and qualitative judgement.  

1.5 Overview of this Thesis 

The remainder of this thesis is organised in ÚÐßɯÊÏÈ×ÛÌÙÚȮɯÍÖÓÓÖÞÐÕÎɯ ÛÏÌɯ Ɂ)ÖÜÙÕÈÓɯ

%ÖÙÔÈÛɂɯÚÛàÓÌɯÖÍɯÛÏÌɯ4ÕÐÝÌÙÚÐÛàɯÖÍɯ,ÈÕÊÏÌÚÛÌÙȭɯ"ÏÈ×ÛÌÙɯƖɯ×ÙÌÚÌÕÛÚɯÈÕɯÖÝÌÙÝÐÌÞɯÖÍɯÛÏÌɯ

crude oil distillation system, followed by a review of relevant work on modelling  of 

these systems. Previous work on the design and optimisation of heat-integrated crude 

oil distillation systems, methodologies for process design for flexibility, and 

optimisa tion methods are critically discussed. 
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Chapter 3 presents Publication 1: Ibrahim, D., Jobson, M., Guillén-Gosálbez, G., 2017. 

Optimization -based Design of Crude Oil Distillation Units using Rigorous Simulation 

Models. Ind. Eng. Chem. Res., 2017, 56 (23), pp 6728ɬ6740, DOI:  10.1021/acs.iecr.7b01014. 

In this work, a new approach for the design of crude oil distillation systems using 

rigorous simulation models is proposed. The strategy for modelling  the crude oil 

distillation unit is presented, followed by the  optimisation problem and its solution 

procedure. Two examples are presented to demonstrate the application of this 

approach. 

Chapter 4 presents Publication 2: Ibrahim, D., Jobson, M., Li, J., Guillén-Gosálbez, G., 

2018. Optimization -based Design of Crude Oil Distillation Units using Surrogate 

Models and a Support Vector Machine. Chem. Eng. Res. Des., 2018,  DOI: 

doi.org/10.1016/j.cherd.2018.03.006. In this work, a new approach for the design of 

crude oil distillation systems based on surrogate models is proposed. The distillation 

column modelling  method is presented first, followed by a framework for optimisation 

of the column structu re and operating conditions. The application of the approach is 

illustrated using  an example. 

Chapter 5 presents Publication 3 and 4: Ibrahim, D., Jobson, M., Lie J., Guillén-

Gosálbez, G., 2017. Optimal Design of Flexible Heat -Integrated Crude Oil Distilla tion 

Units using Surrogate Models. Chem. Eng. Res. Des. [To be submitted] and Ibrahim, D., 

Jobson, M., Guillén-Gosálbez, G., 2017. Design of Chemical Processes under 

Uncertainty Combining the Sample Average Approximation and the Analytic 

Hierarchy Process. Comput. Chem. Eng. [Submitted], respectively . In Publication 3, a 

new approach for the design of flexible crude oil distillation systems that process 

multiple crude oil feedstocks is proposed. The capabilities of the proposed method are 

illustrated  using a case study. Publication 4 extends the approach proposed in 

Publication 3 to address design problems with a large number of operating scenarios 

that may be encountered during plant operation.  

Chapter 6 highlights the contribution of the research work, di scusses the limitations of 

the research and recommends some future work. 

https://doi.org/10.1016/j.cherd.2018.03.006
https://doi.org/10.1016/j.cherd.2018.03.006
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Chapter 2   Literature review 

In the petroleum refining industry, crude oil distillation  plays a key role in the overall 

production process due to its economic and environmental importance. As discussed 

in Chapter 1, the need for refineries to process different types of crude oil feedstocks 

and/or  blend of crude oils in order to  meet market demand for products and to 

maximise their profit margins, calls for greater flexi bility in the design and operation of 

crude oil distillation systems. To achieve this, there is a need for systematic tools that 

can facilitate the design and optimisation of the crude oil distillation systems.  

To develop such systematic tools, three major challenges need to be addressed. Firstly, 

a simulation model that can represent the complex behaviour of the crude oil 

distillation system is required. Such a model should not only be computationally 

efficient but should also be accurate and robust enough to guarantee convergence. 

Secondly, to account for heat integration during design and optimisation, a heat 

recovery model is required. Heat recovery can be accounted for using either pinch 

analysis or heat exchanger networks (Smith, 2005). Finally, an efficient optimisation 

framework that incorporates the distillation column model and heat recovery model is 

required, in order to  facilitate the search for energy-efficient and cost-effective design 

alternatives within the design space.   

Several works have been carried out on crude oil distillation system, for example, to 

develop new modelling  strategies and to improve established design and optimisation 

methodologies. This chapter reviews the relevant work on modelling , design, and 

opti misation of crude oil distillation systems. First, a technical overview of the crude 

oil distillation system is presented. Second, existing modelling  strategies for crude oil 

distillation units are presented in Section 2.2. Third, previous work on the desi gn and 

optimisation of heat -integrated crude oil distillation systems is presented in Section 2.3. 

Sections 2.2 and 2.3 complements the literature reviews of the papers presented in 
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Chapters 3, 4 and 5. Lastly, methodologies for process design for flexibility and 

optimisation methods are presented in Sections 2.4 and 2.5 respectively.  

2.1 Technology background ï crude oil distillation 

2.1.1 Crude oil and its properties   

Crude oil mixture 

Crude oil or petroleum is a complex mixture of 100 000s of hydrocarbons ranging from 

compounds with one carbon atom (methane) to those with more than twenty. These 

compounds include paraffinic hydrocarbons, naphthenic hydrocarbons and aromatic 

hydrocarbons (Jones, 1995). Paraffinic hydrocarbons are saturated compounds, such as 

ethane, propane, butane and other members of the homologues series. Naphthenic 

hydrocarbons are saturated cyclic compounds, such as cyclo-pentane, cyclo-hexane 

and so on. Lastly, aromatic hydrocarbons are unsaturated cyclic compounds such as 

benzene. In addition , crude oil contains small number  of inorganic compounds 

(impurities) such as sulphur , oxygen, nitrogen  and metals.  

Although all varieties of crude oil contain similar composi tions, the proportion of 

individual components in the crude oil mixtures differs, depending on the origin of the 

crude oil (Jones, 1995). In its original state, crude oil is highly viscou s and has low  flash 

point and therefore has limited values and application; refining is usually required to 

transform the limited value crude oil into a more valuable high-quality product  that 

meets the specifications of the energy market.  

Properties of crude oil mixture 

The value of crude oil in the market is determined by two relevant properties, namely, 

sulphur  content and API (American Institute of Petroleum) gravity (density). The 

amount of  sulphur  in crude oil is of paramount importance to a refinery , as it 

determines the cost of treatment that will be required during refining, which has a 

considerable impact on the refinery economics. Crude oil with less than 0.5 wt% 

sulphur  content is termed ȿÚÞÌÌÛȮɀ while that with higher values are termed sour (Gary 
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et al., 2007). The higher the sulphur  content, the lower the value of the crude oil and 

vice versa. Figure 2.1 illustrates the sulphur  content and API gravity of selected crude 

oils around the world.  

The API gravity expresses the density of the crude oil at 60 ᴌ (ЈὃὖὍ ρτρȢυȾ

ίὴὩὧὭὪὭὧ ὫὶὥὺὭὸώρσρȢυ). The majority of crude oils have API gravity in the range of 

20 to 45 (Gary et al., 2007). In general, heavy crude oils are less valuable than lighter 

ones, as they produce less high value products, and require considerable processing 

cost. 

 

 

Figure 2.1 Density and sulphur  content of selected crude oil (EIA, 2012) 
 

Boiling range 

Another important property of crude oil is the  boiling range. Unlike sulphur  content 

and API gravity, the boiling range of a crude oil reveals the amount of  valuable 

products that can be recovered from the whole crude oil. The bo iling range of a crude 

oil is typically determined experimentally using one of the following tests: true boiling 

point (TBP), ASTM D86 (American Society for Testing and Materials), and equilibrium 

flash vaporisation  (EFV) (Watkins, 1979; Jones, 1995; Gary et al., 2007; Fahim et al., 
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2009). Various correlations are available for inter -conversion between the distillation 

curves; the details of these correlations and their application are presented by Riazi 

(1989). 

Other important properties of crude oil include salt content, pour point, carbon 

residue, nitrogen content, metal content, flash point,  etc. This list is inexhaustible, as 

there are many properties used to characterise crude oil mixtures in the petroleum and 

refining industries.  

Characterisation of crude oil mixture 

The whole crude oil boiling point curve can be divided  into several distinct segments. 

For example, during TBP distillation, the volume percent distilled can be collected over 

a narrow temperature ra nge, as the temperature is increased gradually, several distinct 

fractions can be defined. Thus the whole crude oil is split into fractions. Each fraction 

still contains many unknown components. Nonetheless, the components have similar  

boiling point, which  will be useful for calculating other properties and for the design of 

the separation system. For calculation convenience, each fraction can be treated as a 

pure component, which are commonly termed ȿpseudo-ÊÖÔ×ÖÕÌÕÛÚɀ (Fahim et al., 

2009). 

In engineering practice, it is not necessary to apply experimental procedures to 

generate the pseudo-components. Once the true boiling point curve for the whole 

crude oil is available, simple numerical  calculations can be applied to divide the whole 

crude oil TBP curve into pseudo-components. There is no standard rule for selecting 

the number of pseudo-components to be used for a specific type of crude oil mixture, 

although a few sources suggested 30, 10 and 8 pseudo-components for boiling point 

ranges of 38ɬ427 ᴈ, 427ɬ649 ᴈ and 649ɬ899 ᴈ respectively (Chang et al., 2012). In 

general, the higher the number of pseudo-components, the better the accuracy of the 

calculations, and the larger the computational effort required.  



39 
 

Over the years, industrial practitioners and petroleum engineers have developed 

several correlations that can be employed to divide the whole crude oil into pseudo-

components, and subsequently determine the physical properties (density and 

volume), transport properties (viscosity, thermal conductivity, diffusivity, etc.) and 

thermodynamic properties (enthalpy, heat capacity, K -values, etc.) of each pseudo-

component that can be used in design calculations (Fahim et al., 2009). Most of these 

correlations are embedded in commercial process simulation packages, e.g., Aspen 

HYSYS, Aspen Plus, UNISIM, and Pro II, and have been used to facilitate simulation, 

design, and optimisation of petroleum refining processes, including crude oil 

distillation systems.  

2.1.2 Crude oil distillation products and separation specifications 

As discussed in Chapter 1, crude oil distillation is required to perform the initial 

separation of crude oil into various intermediate products that are either blended into 

final products ( e.g., gasoline, diesel, and kerosene) or sold as feedstocks to the chemical 

and petrochemical industries. Table 2.1 presents typical crude oil distillation 

intermediate products and their boiling range (specification).  

Table 2.1 Recommended ASTM boiling ranges (in ᴈ ) for products of atmospheric 

tower#  

Product         A        B       C 

Light naphtha   121 ɭ 135* 121 ɭ 135* 121 ɭ 135* 

Heavy naphtha  204* 163* 163* 

Light distillate   191 ɭ 316* 149 ɭ 316* 149 ɭ 288* 

Heavy distillate  302 ɭ 357* 302 ɭ 357* 274 ɭ 357* 

Atmospheric gas oil  Determined by allowable oil temperature  

* End point  i.e., the boiling temperature to vaporise the entire product  

# Watkins (1979) 

A: Maximum naphtha operation  

B: Maximum light distillate operation  

C: Maximum heavy distillate operation  
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The amount of each distillation product can be estimated from the whole boiling point 

curve.  To achieve this, the boiling point curve needs to be split into several segments 

that correspond to the boiling point range of the products. The temperature on the 

boiling point curve that represents the limit for each product is called ÛÏÌɯȿÊÜÛɯ×ÖÐÕÛȮɀ 

and the volume percent corresponding to the cut point represents the amount of the 

product (see Figure 2.2). 

For each cut (product), the temperature (T0%) at which the first component vaporises 

ÐÚɯÊÈÓÓÌËɯÛÏÌɯȿÐÕÐÛÐÈÓɯÉÖÐÓÐÕÎɯ×ÖÐÕÛȮɀ while the vaporisation  temperature (T100%) of the 

final component is called ÛÏÌɯȿÌÕË×ÖÐÕÛȭɀ These concepts are illustrated  in Figure 2.2 

 

 

Figure 2.2 Cut point temperature between distillation products and 5 -95 Gap (adapted 

from Watkins (1979)) 

Unlike conventional distillation in which almost pure products can be produced, in 

crude oil distillation, there is no sharp separation between adjacent products; thus, 
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components with boiling points lower than the cut point temperature, and components 

with boiling point higher than the cut point temperature are present in the product. 

This overlap has significant implications on the quality and boiling range of products. 

For example, the presence of components with boiling  point below the cut point 

temperature, lowers the boiling point of the cut to below the required specification. To 

maintain the overlap within acceptable limits , product quality specifications are 

needed. 

In crude oil distillation, two important  terms are commonly used to specify the product 

quality and degree of separation, namely, ASTM boiling temperature and 5 -95 gap 

(Watkins, 1979). ASTM boiling temperature is a key specification for most distillate 

products, and it defines the quality of the distillation product. The specification is 

commonly defined at T5% and T95% boiling points of the product, indicating the 

temperature at which 5% and 95% of the product will vaporise in the ASTM test. The 5-

95 gap defines the degree of separation between two adjacent products. Quantitatively, 

it is the difference between T5% ASTM boiling temperature of a heavy product and 

T95% ASTM boiling temperature of an adjacent lighter product (see Figure 2.2). A 

positive difference indicates a gap, which is an indication of a good separation, while a 

negative difference indicates an overlap, which is an indication of a sloppy separation. 

Table 2.2 presents a typical ASTM 5-95 gaps between the indicated products. 

Table 2.2 Separation criteria for atmospheric distillation products (Watkins, 1979) 

Separation 5-95 Gap, ᴈ 

Light naphtha ɭ heavy naphtha -6.67 to -1.11 

Heavy naphtha ɭ light distillate  -3.89 to 10 

Light distillate ɭ heavy distillate  -17.8 to -12.2 

Heavy distillate ɭ atmospheric gas oil -17.8 to -12.2 
 

2.1.3 Crude oil distillation system 

Crude oil distillation is the first process in any petroleum refinery. Figure 2.3 shows a 

diagram of a typical crude oil distillation system. The system comprises a preheat train, 

a fired heater, and a crude oil distillation unit (consistin g of a distillation column 



42 
 

equipped with side -strippers and pump -around loops). This section presents a detailed 

description of the individual components of the crude oil distillation unit.  

 

  

Figure 2.3 Conventional crude oil distillation system.  

2.1.3.1 Pre-separation: preheat train, desalter and fired heater   

Figure 2.3 shows the configuration of a typical refinery crude oil distillation system. 

Raw crude oil, usually at ambient temperature is pumped from storage tanks and 

preheated in two stages.  Firstly, the crude oil is partially heated in the first part of the 

Preheat Train and fed to a desalter which removes dissolved or suspended salts from 

the crude oil feed (Gary et al., 2007). The inlet temperature of the desalter is 

approximately 160 ᴈ. The desalted crude oil is further heated in the second part of the 

Preheat Train. The heat used in the Preheat Train is mainly heat recovered from the 

product coolers, pump -around loops, and column condenser. The outlet temperature 

of the Preheat Train depends on the degree of heat recovery. The outlet temperature is 

typically between 270 ᴈ and 290 ᴈ (Gary et al., 2007). 
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Before the crude oil is fed to the crude oil distillation column, it undergoes further 

heating in a fired heater, also known as furnace.  The outlet temperature of the furnace 

ranges between 350ᴈ and 370ᴈ. The temperature is set by the maximum allowable 

temperature of the crude oil mixture; and the temperature should be sufficient to 

vaporise the entire distillate products to be recovered in the column, plus an extra 2 to 

ƙɯǔɯÝÈ×ÖÙÐÚÈÛÐÖÕȮɯÊÈÓÓÌËɯȿÖÝÌÙɯÍÓÈÚÏɀɯ(Watkins, 1979); outlet temperatures that would 

cause thermal cracking of the crude oil mixture should be avoided.    

2.1.3.2 The main distillation column  

The heated, partially vaporised crude oil is fed to the flash zone of the atmospheric 

fractionation column a few trays above the bottom stage. Stripping steam is also 

supplied  to the column at the bottom stage, which partly suppresses the boiling point 

of the crude oil and also, causes further vaporisation . The crude oil mix ture is then 

recovered into various fractions, in this case, light naphtha (LN), heavy naphtha (HN), 

light distillate (LD) and heavy distillate (HD). The residue from the atmospheric 

column contains valuable hydrocarbons that are recovered under reduced pr essure in 

a vacuum distillation column (not shown in Figure 2.3).  

Typically, the atmospheric distillation column contains between 30 to 50 trays, 

depending on the type of product produced and the degree of separation required 

(Gary et al., 2007). Apart from the distillation top product, all products other than the 

residue are withdrawn  from the column at intermediate trays (side -draws).  

2.1.3.3 The side-strippers 

To maintain satisfactory boiling range of products , side strippers are employed to 

recover light components from side -draws. Heat is supplied  to the side-stripper in two 

ways: direct heating using live steam and indirect heating via a reboiler. In both cases, 

the stripped light material vapour  is returned to the main column. In most column 

arrangements, side-strippers contain between 3 and 8 trays (Gary et al., 2007). 
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2.1.3.4 The pump-around loops 

In a pump -around loop, hot liquid is drawn from the column, cooled in a heat 

exchanger by exchanging heat with a colder stream, and returned to the column two to 

three trays above the draw point. Pump-arounds are attached to the atmospheric 

disti llation column for three main reasons: (i) to enhance separation efficiency by 

providing internal reflux; (ii) to increase the energy efficiency of the separation system 

by creating heat recovery opportunities; (iii) to reduce the diameter at the top of 

column by controlling the vapour and liquid traffic at various sections of the complex 

column. Heat recovered from the pump -around loops, together with other available 

heat sources (column condenser and product coolers) is used to preheat the raw crude 

oil, thus reducing fuel consumption in the furnace and most importantly the operating 

cost. 

To summarise, crude oil, as well as distillation products,  are complex mixtures of 

hydrocarbons, containing a small amount of non-hydrocarbon molecules. Both crude 

oil and distillation products are mainly described using boiling point curves. To 

facilitate modelling, design and optimisation of crude oil distillation systems , several 

useful correlations have been developed to aid characterisation of crude oil mixtures 

into  pseudo-components. 

Crude oil distillation system separates the complex crude oil mixture into valuable 

products. The system has a highly sophisticated configuration, consisting of side -

strippers, pump -arounds, a fired heater and a column condenser. Accurate, robust and 

computationally efficient models are required for the design and optimisation of the 

system. These models are discussed in Section 2.2; Section 2.3 presents available 

methods for the design of crude oil distillation systems.  

2.2 Crude oil distillation column models 

In general, crude oil distillation column models can be broadly classified into three 

categories, namely, simplified, rigorous and surrogate models. In this thesis, simplified 

models are those models based on modified FenskeɬUnderw oodɬGilliland (shortcut 
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models) design equations; rigorous models refer to models based on first principles 

(material and energy balance, equilibrium equations etc.), and surrogate models are 

data-driven models such as artificial neural network, polynomial s etc. These models 

can be used in various applications including grassroots design, retrofit  and 

operational optimisation (involve modifications to only operating conditions). The 

model used in each application requires a unique set of degrees of freedom. For 

example, models used for operational optimisation include only the continuous 

variables (i.e., operating conditions) of the crude oil distillation unit, such as feed inlet 

temperature, pump -around duties, and temperature drops, stripping steam flow ra tes 

and reflux ratio . Conversely, for a grassroots or retrofit design problem, the model 

should include discrete variables (representing column structure) in addition to 

continuous variables, since the model is required to simulate alternative distillation  

column structures and their operating conditions during optimisation. The discrete 

variables can include the locations of the feed tray and of pump -around and side-

stripper draw streams, and the number of trays in each section of the column. This 

section discusses the three categories of models available for simulating crude oil 

distillation units, their limitations,  and scope of application.   

2.2.1 Simplified models 

Simplified  models constitute another alternative for the modelling  of distillation units.  

In the context of crude oil distillation, these models are based on the column 

decomposition strategy of Liebmann and co-workers (Liebmann, 1996; Liebmann et al., 

1998), in which the crude distillation unit is treated as a sequence of thermally coupled 

columns. Modified FenskeɬUnderwoodɬGilliland  design equations for simple columns 

are then applied for each column section, while the separation is specified in terms of 

purity or recovery of light  key and heavy key components. These models can predict 

the minimum reflux ratios and number of trays in each column section corresponding 

to specified reflux ratios. Nevertheless, the predictions from simplified  models are 

rather poor compared with rigorous  model. Consequently, simplified  models are not 

commonly applied  in practice.  
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2.2.2 Rigorous models 

Rigorous distillation models are based on the so-called MESH (MaterialɬEquilibrium ɬ

SummationɬHeat) equations which represent relevant phenomena for each stage 

within the column. These models can be reasonably accurate, as they are based on the 

first principles governing the separation process (i.e., stage-by-stage material and 

energy balance), although they assume phase equilibrium is achieved on each stage, no 

chemical reactions occur, and no entrainment of liquid drops in vapour and vapour 

bubbles in liquid (Seader et al., 2010). With these models, it is possible to estimate the 

temperature and pressure profiles within the column, in addition to stream flow rates 

and compositions. Figure 2.4 illustrate a simple equilibrium stage.  

 

Figure 2.4 General equilibrium stage (adapted from Seader et al. (2010)) 
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For the simple equilibrium stage in Figure 2.4, the MESH equations representing 

Material balance, Equilibrium equations, Summation equations and Heat balance can 

be written as follows (Seader et al., 2010): 

Material balance for each component 

ὒ ὼȟ ὠ ώȟ Ὂᾀȟ ὒ Ὗ ὼȟ ὠ ὡ ώȟ

π 

                      (2.1) 

 

Phase-Equilibrium relation for each component  

 

ώȟ ὑȟὼȟ π                        (2.2) 

 

Mole-fraction Summations (one per stage) 

 

ώȟ ρȢπ π 
                       (2.3) 

 

ὼȟ ρȢπ π 
                       (2.4) 

 

H equation, denoting energy balance (one per stage) 

ὒ Ὤ ὠ Ὤ ὊὬ ὒ Ὗ Ὤ ὠ ὡ Ὤ ὗ π        (2.5) 

where indices Ὥ and Ὦ denote component and stage number respectively. Ὂ is the feed 

molar flow rate; ὠ and ὒ are vapour and liquid molar flow ra tes; Ὗ and ὡ are liquid 

and vapour side streams; ὗ represent heat transfer to or from stage Ὦ; ᾀ denotes the 

component molar fraction in the feed stream; ὼ and ώ are the liquid and vapour 
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component mole fractions; Ὤ and ὑ denotes enthalpy and equil ibrium constant 

respectively.  

The outlined MESH equations are typically defined for each equilibrium stage. In a 

distillation column comprising C components and N number of stages, the number of 

MESH equations to be solved is equal to N(2C + 3) (Seader et al., 2010). Due to the 

strong interactions and highly non -linearity of these equations, specially-tailored 

algorithms are required to generate feasible solutions. The solution algorithms include 

bubble point (BP) method for systems with narrow  boiling point components, sum -rate 

(SR) method for systems with wide  boiling point components and Newton -Raphson 

for systems with intermediate  boiling case (Seader et al., 2010). Due to the iterative 

nature of the solution methods, the column simulation is computationally demanding. 

The MESH equations and their corresponding solution methods are implemented in 

several commercial process simulators (such as Aspen HYSYS, Aspen Plus, UNISIM 

and PRO/II), and have been used by several researchers and industrial practitioners to 

design (Li ebmann, 1996; Liebmann et al., 1998; Bagajewicz and Ji, 2001), analysis 

(Errico et al., 2009; Benali et al., 2012; Waheed et al., 2014) and optimise (Basak et al., 

2002; Al -Mayyahi et al., 2011; Gu et al., 2015) the crude oil distillation columns.  

Liebmann (1996) presents a stepwise procedure for the design of crude oil distillation 

column that combines rigorous column simulation and pinch analysis. In each step, a  

grand composite curve is constructed using stream data generated from a rigorous 

simulation. The grand composite curve is used to facilitate the search for column 

structure and operating conditions that lead to significant savings in energy 

consumption.  

Bagajewicz and Ji (2001) extends the work of Liebmann (1996) and also introduces the 

concept of heat demand-supply  diagram. Firstly, a rigorous simulation of a column 

with no pump -arounds is setup. Then, a heat demand-supply  diagram is applied to 

identify suitable location of the pump -arounds while taking into acc ount the effect of 

stripping steam on the maximum heat recovery of a crude oil distillation system.   



49 
 

Rigorous model have been implemented in frameworks to facilitate optimisation of an 

existing crude oil distillation unit. For example, Bagajewicz (1998) combined pinch 

analysis and a rigorous column model into a framework to aid the search for column 

operating conditions that mini mise utility requirements. The rigorous column model 

predicts the product quality and flow rate, column temperature profile and stream 

enthalpy change. Operating v ariables optimised include pump -around duties and 

return temperatures, overɬflash ratio and stripping steam flow rates.  

Basak et al. (2002) develop an approach for online optimisation of crude oil distillation 

units using a rigorous model. The model parameters, such as stage efficiencies are 

tuned to minimise the discrepancy between the measured plant data and model 

prediction. A gradient -based optimisation method is applied to search for the best 

combination of operating variables (steam and pump -around flow rates, reflux ratio 

and feed temperature) that maximise profit.   

Inamdar et al. (2004) and Al -Mayyahi et al. (2011) develop frameworks for 

optimisation of crude oil distillation unit, taking into account multiple objectives. Both 

works applied the elitist non -dominated sorting genetic algorithm (NSGA -II). Inamdar 

et al. (2004) focused on maximising profit and minimising the cost of energy by 

varying product flow rates, pump -around flow rate, reflux ratio,  and feed temperature, 

while Al -Mayyahi et al. (2011) focused on maximising profit and minimising CO 2 

emissions. The optimisation variables considered in the work o f Al -Mayyahi et al.  

(2011) include steam flow rate, feed temperature and flow rate, pump -around duty and 

reflux ratio.  

Ali et al. (2013) applied rigorous models to optimise the net profit of an exi sting crude 

oil distillation unit. First, the crude oil distillation unit is modelled in Aspen HYSYS 

software. Then, the NLP solver embedded in the commercial software is used to select 

the operating variables (pump -around flow rates, feed temperature, bot tom steam flow 

rate and product flow rates) that lead to maximum profit.   
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Rigorous models consist of complex nonlinear equations derived based on first 

principles. These models are reasonably accurate, although their solution methods are 

computationally d emanding. Several works have applied rigorous models, for 

example, to design (Liebmann, 1996; Bagajewicz and Ji, 2001) and to optimise (Basak et 

al., 2002; Inamdar et al., 2004; Ali et al., 2013) the crude oil distillation unit. Only the 

work of Liebmann ( 1996) and Bagajewicz and Ji (2001) have accounted for heat 

recovery. None of the methodologies presented have incorporated column structural 

degrees of freedom (e.g., number of trays in column sections, feed tray location, pump -

around, and side-stripper lo cations) as a design variable. Thus, these methodologies 

cannot be directly applied to perform optimisation -based design of the crude oil 

distillation unit.  

2.2.3 Surrogate models 

Surrogate models, also known as data-driven models, statistical models or me ta-

models are compact, scalable mathematical models that describe the relationship  

between specific inputs (e.g., feed temperature) and outputs (e.g., product quality) of 

complex systems. Surrogate models are less computationally demanding than rigorous 

simulation models. Thus they are suitable for implementation in an optimisation 

framework, and for sensitivity analysis. Various forms of surrogate models ( e.g., linear, 

polynomial, artificial neural network, etc.) may require different sample size during 

training (fitting/ regression) in order to achieve a desired accuracy (Nuchitprasittichai 

and Cremaschi, 2012; Quirante et al., 2015). In general, a large sample can improve the 

accuracy of the model. However, the sampling and model fitting time may be 

increased signific antly (Nuchitprasittichai and Cremaschi, 2012).   

Surrogate modelling  of chemical processes comprises three main steps, namely, 

sampling (also known as data generation), model selection, and model fitting (Biegler 

et al., 2014).  

Prior to  sampling, it is necessary to select the desired inputs and outputs of the system 

of interest. The inputs and outputs to be used depend on the scope of the model; for 
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example, a model used for design purposes should take into account structural and 

operational variables of the system. Typically, the input and output variables are 

selected based on experience and knowledge of the system. In most cases, it is 

desirable to select variables that have a significant  impact on the system performance. 

Such variables can be identified  via a sensitivity analysis. 

Once the variables are selected, a data set can be generated. The data set is typically 

created in two ways: real plant measurements and/or experimental data, and multiple 

rigorous simulations. In multiple rigorous simulations,  statistical technique is applied 

to generate data points from models (Henao and Maravelias, 2010; Gueddar and Dua, 

2011; Nuchitprasittichai and Cremaschi, 2013; Biegler et al., 2014; Boukouvala et al., 

2015; Quirante and Caballero, 2016), while plant measurements are often used to build 

surrogate models of an existing process. These models are mostly used to facilitate 

operational optimisation (Ochoa-Estopier and Jobson, 2015a; Osuolale and Zhang, 

2017), process troubleshooting (Mouli et al., 2016; Yang and Hou, 2016), and process 

control (Osuolale and Zhang, 2015; Xie et al., 2015)  

In the next step, the form of the model  to represent the data is selected. Different forms 

of model can be used for data fitting, for example, polynomial (Heiberger and 

Neuwirth, 2009) , artificial neural networks (Beale et al., 2015), support vector 

regressions (Vapnik, 1995), etc. The form of model  to be used for regression is crucial  

and should be carefully selected. For example, linear models are suitable for input ɬ

output data set with strong linear relationship. Lastly, an optimisation algorithm 

(Floudas, 1995; Biegler et al., 1997; Edgar et al., 2001) is applied to fit the model to the 

data set by minimising the error between the model predictions and the original data. 

Afte r the model is built , several statistical tests need to be performed on the model to 

test its validity.  Among the surrogate modelling techniques, artificial neural network 

leads to accurate and robust models that are easier to implement in an optimisation 

framework (Henao and Maravelias, 2010; Nuchitprasittichai and Cremaschi, 2012); 

thus this work makes use of artificial neural network to model the complex crude oil 

distillation unit.  
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2.2.3.1 Artificial neural networks 

Artificial neural networks are computational modelling tools applied to approximate 

complex non-linear systems and to classify data set. Artificial neural network have 

been successfully applied in various field of research, including system identification 

(Prasad and Bequette, 2003; Aguado et al., 2009), models reduction (Gueddar and Dua, 

2011; Xie et al., 2015), fault detection (Kankar et al., 2011; Ben Ali et al., 2015; Yang and 

Hou, 2016), process troubleshooting (Mouli et al., 2016; Yang and Hou, 2016), 

operational optimisation (Liau et al., 2004; Ochoa-Estopier et al., 2012), system design 

(Henao and Maravelias, 2010; Fahmi and Cremaschi, 2012), and property prediction 

(Hussain, 1999; Gharagheizi et al., 2011; Afrand et al., 2016). The wide application of 

artificial neural network is attributed to their ability to capture complex non -linear 

relationships between input -output d ata, especially when the relation among the 

system variables is unknown (Dua, 2010).  

Artificial neural network architecture can be broadly classify into feedforward, 

recurrent or feedback, and mesh (Silva et al., 2017). Feedforward network is the most 

widely acceptable architecture due to its mathematical simplicity and ease of 

implementation within an optimisation algorithms (Nuchitprasittichai and Cremaschi, 

2012). In a feedforward network, information is processed in the forward direction 

only. Figure 2.5b shows a typical multi -layer feedforward network with three layers: 

input, hidden and output layers, connected via neurons. 

 

(a) 
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(b) 

Figure 2.5 Artificial neural network (a) network neuron; (b) multi -layer feedforward 

neural network (Adapted from (Beale et al., 2015)). 

In general, neurons are the fundamental building block of a ny artificial neural 

network. A neuron, as shown in Figure 2.5a, consists of two main components: the 

summation point, В , and the transfer function, f, (Basheer and Hajmeer, 2000; 

Himmelblau, 2008; Beale et al., 2015). The summation point adds the product of all 

inputs, p, and their corresponding weights, W, and bias, b, to produce a net scalar 

input , n, while the transfer function, f, takes the net input and produce a scalar output, 

a.  

Various forms of transfer function used in building artificial neural network are 

available, such as linear, log-sigmoid, tan -sigmoid etc. Figure 2.6 shows the schematic 

of the most commonly used transfer function.  
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(a)                                                    (b)                                                     (c) 

Figure 2.6 Transfer functions applied in artificial neural network architecture (a) linear, 

(b) log-sigmoid, and (c) tan-sigmoid (Adapted from (Beale et al., 2015)). 

Linear transfer function takes a weighted input and transform, linearly, to an output 

between  Њ and  Њ; log-sigmoid and tan -sigmoid transform weighted input to a 

range of 0 to 1, and ɀ ρ to  ρ, respectively. Log-sigmoid and tan -sigmoid are 

commonly used in the hidden layer, while linear transfer function is applied in output 

layer. In this work , log-sigmoid and linear functions are used in the hidden and output 

layers respectively. 

Before applying the neural network, the weights and biases of the network (see Figure 

2.5b) needs to be tuned such that the artificial neural network mimicked the beh aviour 

of the input -ÖÜÛɯËÈÛÈȭɯ3ÏÌɯ×ÙÖÊÌÚÚɯÐÚɯÊÈÓÓÌËɯȿÛÙÈÐÕÐÕÎɀɯÈÕËɯÐÛɯÐÚɯÊÈÙÙÐÌËɯÖÜÛɯÜÚÐÕÎɯ

optimisation method such as Levenberg-Marquardt, Bayesian regularization, BFGS 

Quasi-Newton, scaled conjugate gradient etc. (Beale et al., 2015). The fastest training 

algorithm is Levenberg -Marquardt, and it is the one used in this work. The objective of 

ȿÛÙÈÐÕÐÕÎɀɯÐÚɯÛÖɯÔÐÕÐÔÐÚÌɯÈɯÊÖÚÛɯÍÜÕÊÛÐÖÕȮɯÐÕɯÛÏÐÚɯÊÈÚÌɯÛÏÌɯÔÌÈÕɯÚØÜÈÙÌɯÌÙÙÖÙɯȹÚÌÌɯ$ØȭɯƖȭƚȺɯ

between the network predictions and the  input -output data by adjusting the weights 

and biases. To facilitate training and also enhance the performance of the built 

network, the input -output data set should be scaled between ρ and  ρ (Beale et al., 

2015). 
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where mse is the mean square error, t and a denote the target and predicted output 

respectively, N is the total number of sample. Section 2.2.3.2 presents the application of 

surrogate models in crude oil distillation, including the use of artificial neural 

networks.  

2.2.3.2 Modelling of crude oil distillation unit based on surrogate models 

Surrogate models have been used by several authors to simulate the crude oil 

distillation system. Liau et al. (2004) and Motlaghi et al. (2008) develop an artificial 

neural network (ANN) mode l of a crude oil distillation column using data from 

existing plants. In the work of Liau et al. (2004), the distillation model inputs include  

crude oil properties, feed temperature, product flow rates while the outputs include 

product quality. The model is optimised using successive quadratic programming to 

determin e the operating conditions that improve product yield. Although the built 

model is accurate, several operating variables such as stripping steam and pump-

around duties and temperature drops are not considered. Similarly, the artificial neural 

network model  develop by Motlaghi et al. (2008) include crude oil properties and 

operating variables as inputs, while t he outputs are product quality and their flow 

rates. A genetic algorithm is used to optimise the flow rate of products according to 

their market values.   

Yao and Chu (2012) developed a surrogate model of the crude oil distillation using the 

concept of support vector regressions. The model is regressed using data generated via 

multiple rigorous simulations (in Aspen Plus).  The  surrogate model is implemented in 

a framework to optimise profit by varying operating variables. The variables optimised 

include feed temperature, reflux ratio, product flow rates, pump -around temperature 

drops and flow rates, and steam flow rates.   
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López C. et al. (2013) formulate a framework to optimise the operational variables of 

crude oil distillation system that processes crude oil blends. The distillation system 

comprises of three atmospheric columns and two vacuum columns and preheats trains. 

Meta-models based on second order polynomial functions are used to model the crude 

oil distillation units. The models are regressed using samples obtained from multiple 

rigorous simulations. The built models together with an energy balance representing 

the heat exchanger network are implemented in a framework to maximise net profit.   

Ochoa-Estopier and Jobson (2015a) formulate an approach for operational optimisation 

of crude oil distillation systems using surrogate models. Several artificial neural 

networks are regressed against data generated via multiple rigorous simulations (in 

Aspen HYSYS). The heat exchanger network model of Rodriguez (2005) is adopted to 

represent the crude oil preheat train. The dependence of thermal properties on 

temperature in process streams is modelled  using a combination of linear (for sensible 

heat) and third order polynomial (for phase change) correlations. A stochastic 

optimisation method based on simulated annealing is applied to optimise net profit. 

The variables considered for optimisation include operating conditions such as pump -

around temperature drops and duties, feed inlet temperature, steam flow rate and 

product flow rates.  

Recently, Osuolale and Zhang (2017) modelled a crude oil distillation syste m, 

comprising a prefractionator, atmospheric column, and vacuum column, using 

bootstrap aggregate artificial neural networks. In this strategy, several artificial neural 

networks are constructed for each distillation unit. The predictions (i.e., outputs) f rom 

all the artificial neural networks are aggregated and used as the network output. In this 

way, the accuracy and reliability of the artificial neural networks could be improved.  

The models are combined with an optimisation algorithm (successive quadrat ic 

programming) to optimise profit objective. Decision variables include flow rates of 

products and steam, pump-around temperature drop and duties, while constraints are 

imposed on product quality (in terms of T5% and T95% boiling temperatures).  
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Various regression techniques have been applied to construct surrogate models for 

crude oil distillation units. A few modelling  approaches (Liau et al., 2004; Motlaghi et 

al., 2008) have applied real plant data to regress the parameters of the surrogate model. 

Therefore, the valid range of application for these models is restricted to previously 

known scenarios. Again, since sampling of real plant data is usually associated with 

measurement error, the accuracy of the built model could be compromised. Other 

approaches (Yao and Chu, 2012; López C. et al., 2013; Ochoa-Estopier and Jobson, 

2015a; Osuolale and Zhang, 2017) applied data generated via multiple rigorous 

simulations to regress the parameters of the surrogate model. Thus the model can 

explore scenarios other than those encountered during previous  operation. In this way, 

the chances of obtaining a better solution could be  enhanced. Among the optimisation 

approaches, only the work of López C. et al. (2013) and Ochoa-Estopier and Jobson 

(2015a, 2015b) have adequately accounted for heat integration within the system, thus 

increasing the likelihood that the solution obtained can be valid in practice, and also 

the energy efficiency of the system is improved. Furthermore, Osuolale and Zhang 

(2017) have also improved the energy efficiency of the system by minimising exergy 

losses. None of the surrogate modelling  approaches presented here have incorporated  

structural degrees of freedom (e.g., number of trays in column sections, feed tray 

location, pump -around, and side-stripper locations ) as a design variable, hence the 

methodol ogies cannot be applied to perform optimisation -based design of the crude oil 

distillation unit.  

2.3 Design of heat-integrated crude oil distillation systems 

2.3.1 Design for single crude oil feedstock 

Various methods are available for the design of conventional crude oil distillation 

systems. Some of these methods are carried out based on heuristic rules, experience, 

empirical correlations and simple calculations. For example, Nelson (1958) describes a 

design method for crude oil distillation columns. In this approach, the number of trays 

in each section of the column and stripping steam required are estimated based on 

empirical correlations that are constructed from previously  established designs. Later, 
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Watkins (1979) describes a procedure for the design of atmospheric and vacuum 

distillation columns. The design procedure is guided by heuristic rules . In the 

approach of Watkins (1979), the required number of trays in each section of a column is 

selected from a predetermined range, and stripping steam required is estimated based 

on product flow rates.  

The methods presented by Nelson (1958) and Watkins (1979) formed the basis for 

subsequent design methodologies of crude oil distillation columns. However, the 

design methodologies of Nelson (1958) and Watkins (1979) require trial and error in 

their calculations. Furthermore, the heat exchanger network is designed after the 

design of the crude oil distillation column is completed. Thus, the in teractions between 

the distillation columns and the associated heat recovery systems are not taken into 

account.  

To design an energy-efficient distillation column , the interactions between the column 

and the heat recovery network need to be taken into account. Several researchers have 

focused on developing an integrated design of the crude oil distillation column and the 

associated heat recovery network. For example, Liebmann (1996) develops a 

methodology for the design of crude oil distillation columns using rigorou s column 

models and pinch analysis. In this design method, an indirect  sequence of simple 

columns with no thermal coupling is first initialised  by decomposing the conventional 

atmospheric distillation column. The advantage of the decomposed columns is that  it 

allows the evaluation of feed tray location and number of trays in each section of the 

column to be carried out based on product specification and feed composition. The 

decomposed column is simulated in Aspen Plus, and a grand composite curve is 

constructed using the process stream data of the crude atmospheric distillation 

column. The grand composite curve is used to suggest column modifications that 

enhance separation and improve the potential  for energy savings. The main strength of 

the method of Liebmann (1996) is that the interactions between the atmospheric 

distillation column and heat recovery network are taken into account. However, the 

heat exchanger network design is not considered by Liebmann (1996), and the 

distillation column is not optimised.   
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In a related work, Sharma et al. (1999) develop a design approach for crude oil 

distillation unit that uses the c oncept of a column grand composite curve (Dhole and 

Buckingham, 1994). First, the column grand composite curve is constructed using 

temperatureɬenthalpy data obtained from simple energy balance across several 

sections of the complex column. The column grand composite curve is then used to 

identify the maximum amount of energy that can be recovered without affecting the 

separation. This approach neglects the effect of stripping steam on separation and heat 

recovery network design has not been taken into account. Furthermore, the number of 

trays in each column section is fixed, and the distillation column is not optimised .  

To optimise the system, simplified models have been implemented in an optimisation 

framework together with heat recovery models in order to  design the crude oil 

distillation unit (see Chapter 1). The work of Suphanit (1999) accounts for heat 

recovery using pinch analysis, while Rastogi (2006) and Chen (2008) applied heat 

exchanger network. The simplified model allows optimisation of  structural and 

operational degrees of freedom. Even though simplified models are relatively easy to 

handle numerically, their inability to produce an accurate estimate of the distillation 

column performance makes them less useful in real application as compared with 

other models (e.g., rigorous models and shortcut models). 

Overall, the discussion presented above focused on the design of crude oil distillation 

systems that process one type of crude oil feedstock. In general, these design 

methodologies may l ead to a crude oil distillation column that performs well for a 

particular crude oil feedstocks or operating scenario, and perform poorly for other 

crude oil feedstock and/or operating scenarios, particularly in future scenarios where 

the column is to be used to process crude oil types other than the one considered 

during the column design.   

2.3.2 Design for multiple crude oil feedstocks 

To accommodate changes of crude oil feedstock doing operation, the crude oil 

distillation system should be designed to wo rk well over a range of crude oil 
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feedstocks. Along  this line, Bagajewicz and Ji (2001) extended the design approach of 

Liebmann (1996) to propose a new method for the design of crude oil distillation units 

that process light, medium and heavy crude oil feedstocks. The heat demand-supply  

diagram is used instead of the grand composite curve. The design procedure begins 

with an initial column design with no pump -around loops constructed based on the 

design approach of Watkins (1979). The column is then simulated with the lightest 

crude oil to be processed and the process stream data of the column are used to 

construct the heat demand-supply  diagram. Based on the heat demand-supply  

diagram constructed for the column, heat load is transferred from the column 

condenser to the top pump -around. A similar step is carried out to distribute 

condenser heat load to subsequent pump-arounds located between product draws. In 

each step, the product specifications are maintained by adjusting the flow rate of 

stripping steam in side -strippers. The stripping steam flowrate is increased if the 

boiling temperature gap between adjacent fractions becomes smaller than the 

appropriate value. The transfer of heat load continues as long as the cost of energy 

saved can offset the cost of steam added. The operating conditions of the medium and 

heavy crudes are also determined based on the outlined procedure. Although the 

methodology determines the operating conditions of the different types of crude oils 

(light, medium and heavy) to be processed, the trade-off between capital and energy 

cost is not taken into account; pump-around location is selected based on heuristic 

rules; number of trays in column sections are fixed and the distillation column is not 

optimised.   

To optimise the distillation c olumn, More et al. (2010) set up a framework to study the 

effect of binary feed selection on grassroots design of crude oil distillation system. 

First, the crude distillation systems, i.e., pre-flash unit, atmospheric column and 

vacuum column, are modelled  in a process simulator (Aspen Plus). Then, light, 

medium and heavy crudes and their binary mixtures (ratio of 10:90) are used to set up 

different operating scenarios. The optimisation tool embedded in  the commercial 

simulator is used to optimise the distillation column operating variables (feed flow rate 

stripping steam, and product flow rate) for each operating scenario. One major 
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drawback of this analysis is that heat integration is not considered. A lso, the approach 

neglects essential design variables such as number of trays in each column section, and 

other operating variables such as pump-around temperature drops and duties, and 

feed inlet temperature.  

A critical observation of the research litera ture presented in this section indicates that a 

systematic methodology for the design of flexible heat -integrated crude oil distillation 

system is lacking. A systematic design approach should simultaneously consider the 

selection of the distillation column  structural and operating variables, heat integration 

and various crude oils to be processed in a unified framework; this can be carried out 

using sophisticated optimisation techniques for process design for flexibility.  

2.4 Optimisation methods 

Optimisati on is a quantitative mathematical tool that facilitates best selection from a set 

of many alternatives. To identify the best alternative , a quantitative measure of 

goodness called the objective function is required (Biegler et al., 1997). In process 

synthesis and design, common objectives include maximising n et profit, product yield,  

and net present value, or minimising total annualised cost, energy cost, utility 

consumption and CO 2 emissions. 

The value of the objective function is calculated from the problem variables. The 

variables are classified into dependent and independent variables. Independent 

variables, also known as decision variables, manipulated variables or degrees of 

freedom, refer to those system variables that can be adjusted to improve the objective 

function value. In a chemical process, the independent variables can include 

temperatures, pressure, feed flow rate, etc. Dependent variables, also known as process 

outputs are variables that determine the system performance. Examples of dependent 

variables include column diameter, reactor volume, pr oduct flow rates, etc. To ensure 

the solution from an optimisation is valid, constraints are generally imposed to define 

the design space. Process constraints comprise inequality constraints (e.g., product 
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purity, column hydraulic limit) and equality const raints that define the physical system 

(e.g., material and energy balance, phase equilibrium) 

The objective function, problem variables, and process constraints together form the 

optimisation problem. Optimisation problem encountered in process synthesis a nd 

design can be classified as linear programming (LP), mixed integer linear 

programming (MILP), nonlinear programming (NLP) and mixed integer nonlinear 

programming (MINLP) (Floudas, 1995; Biegler et al., 1997; Edgar et al., 2000). The 

primary  methods for solving these problems can be group into deterministic and 

stochastic search methods. 

2.5.1 Deterministic optimisation methods 

Deterministic methods, also known as rigorous optimisation, are gradient -based 

approaches that rely on derivatives of the functions (objective function and co nstraints) 

to guide the search for the best solution. Several optimisation techniques (such as 

successive linear programming, successive quadratic programming, generalized 

reduced gradient, etc.) that apply deterministic method are implemented in 

commercial software such as GAMS, MatLab, and Excel , and can be employed to 

optimise different type systems.   

One advantage of these methods lies in their ability to guarantee local optimality 

(Floudas, 1995; Edgar et al., 2001). These methods are versatile and may require few 

function evaluations to converge to the optimal solution. Deterministic methods that 

guarantee global optimality are available, e.g. BARON (Tawarmalani and Sahinidis, 

2005) and ANTIGONE (Misener and Floudas, 2014), although they may require large 

storage capacity and considerable computational time.  

Deterministic optimisation method have been applied extensively in many fields  of 

research, including process system engineering. For example in biorefining (Corbetta et 

al., 2016; Pérez Rivero et al., 2016), thermally coupled distillation columns (Caballero 

and Grossmann, 2001; Caballero, 2015), heat exchanger networks (Papalexandri and 



63 
 

Pistikopoulos, 1994; Li et al., 2015; Isafiade and Short, 2016). A comprehensive review 

of various application of deterministic optimisation techniques in process system 

engineering can be found in the work by Grossmann et al. (2000). In the context of 

crude oil distillation, Bagajewicz (1998) formulated a nonlinear programming problem 

to improve the energy efficiency of crude oil distillation unit. Successive quadratic 

programming is applied to search for an optimal  set of operating conditions that 

improves the objective function value.  Basak et al. (2002) and More et al. (2010) applied 

successive quadratic programming to select the best combination of operating 

variables (such as steam and pump-around flow rates, reflux ratio and feed 

temperature), to improve net profit of the system. López C. et al. (2013) and Osuolale 

and Zhang (2017) set up frameworks  to optimise the crude oil distillation system using 

surrogate models. López C. et al. (2013) applied a generalised reduced gradient to 

search for operating conditions that lead to maximum profit, while successive 

quadratic programming  is applied in the work of Osuolale and Zhang (2017).  

Deterministic methods are suitable for problems that are continuously differentiable 

(Floudas, 1995; Edgar et al., 2001). However, many real -life optimisation problems are 

highly nonlinear, non -convex and non-differentiable. Thus there is a need for 

alternative method, for example methods based on stochastic optimisation. 

2.5.2 Stochastic optimisation methods 

Unlike deterministic methods, stochastic optimisation methods do not rely on 

derivative information of the objective function and constraint s while searching for the 

best solution; thus stochastic optimisation is more suitable for problems in which the 

calculation of the function derivatives are complex and for large -scale problems 

defined using black box models. Stochastic optimisation methods apply random choice 

to guide the search process.   

Stochastic search methods can be used to solve various forms of optimisation 

problems, including LP, MILP, NLP, and MINLP. The use of random choice rather 

than numerical calculation to search for optimal  solution help stochastic search 
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methods to be less susceptible to converge to locally optimal solutions. Stochastic 

approaches require many function evaluations before finding the best solution. Thus  

stochastic search methods are computationally demanding. Examples of stochastic 

methods include genetic or evolutionary algorithms (Mitchell, 1 998), simulated 

annealing (Du and Swamy, 2016), pattern search (Wen et al., 2013), particle swarm 

(Marini and Walczak, 2015), and scatter search (Martí et al., 2006).  

Despite the fact that stochastic methods are computationally demanding, many 

research work have applied these methods, for example in kinetic modelling (Pérez 

Rivero et al., 2016), regression analysis (Rogina et al., 2011), robust control of 

distillation column (Ghoreishi et al., 2011), synthesis of heat exchanger networks 

(Ravagnani et al., 2005; Ghanizadeh et al., 2013; Ochoa-Estopier et al., 2015), design of 

intensified distillation column (Vazquez-Castillo et al., 2009), process synthesis and 

design (Yuan et al., 2009; Odjo et al., 2011; Javaloyes-Antón et al., 2013; Skiborowski et 

al., 2015), scheduling of multiproduct batch chemical plant (Arbiza et al., 2008), process 

troubleshooting (Mouli et al., 2016), and supply chain management (Copado-Méndez 

et al., 2013). 

In crude oil distillation, Motlaghi et al. (2008) develop a methodology to optimise 

product yields according to their market values, that is a genetic algorithm selects the 

optimal decision variables such as operating conditions that improve market -driven 

products . Similarly, Yao and Chu (2012) apply particle swarm optimisa tion to facilitate 

the search for operating conditions (feed temperature, reflux ratio, product flow rates, 

pump -around temperature drop and flow rates, and steam flow rates ) that maximise 

net profit. Ochoa-Estopier and Jobson (2015a) develop an operational optimisation 

framework to improve the profitability  of a crude oil distillation system. Decision 

variables include pump -around temperature  drop and duties, steam flow rates and 

feed temperature. Simulated annealing is applied to optimise the system. 

Deterministic and stochastic search methods have been applied by several researchers 

to optimise the crude oil distillation system using differe nt types of objective function 

and constraints. The methodologies have reported an appreciable improvement in the 
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objective function of the optimal solution relative to the base case. However, 

simultaneous optimisation of structural and operational variabl es of the crude oil 

distillation unit have not been considered.  

To take advantage of the benefits of the deterministic and stochastic search methods, 

the two optimisation methods can be integrated to form a hybrid approach (see 

Chapter 5) and can be used to facilitate the design and optimisation of the crude oil 

distillation systems.  

2.5 Process design for flexibility 

The traditional design approach for chemical processes considers one set of operating 

conditions (nominal conditions) at the design stage, t hus ignoring deviations from the 

nominal conditions. This approach may result to a design that has good performance 

in one operating scenario but exhibits poor performance in other operating scenarios 

(Grossmann and Guillén-Gosálbez, 2010)ȭɯ(ÕÚÛÌÈËȮɯ ȿɀÍÓÌßÐÉÓÌɯ ËÌÚÐÎÕɀɀɯÖÍɯ ÈɯÊÏÌÔÐÊÈÓɯ

process considers deviations from the nominal conditions with the aim o f identifying a 

flexible process. A flexible process is capable of establishing feasible steady-state 

operation for a wide range of variation in operating conditions that may be 

experienced during operation (Biegler et al. 1997). In process design, flexibility is 

defined as the inherent characteristic of a design to tolerate variations in process 

conditions (Biegler et al. 1997). 

The design of a flexible chemical process that can handle variability in process 

conditions is a broad area of research within chemical engineering (Pistikopoulos and 

Ierapetritou, 1995; Sahinidis, 2004; Wang and Rong, 2010; Kostin et al., 2012; Rogers 

and Ierapetritou, 2015; Amaran et al., 2016; Wang et al., 2016). The main optimisation 

methods to address this category of problem are stochastic programming and so-called 

robust optimisation (Grossmann and Guillén -Gosálbez, 2010).  

In stochastic programming, the process variability is described using random points 

generated from a probability distribution. Here it is assumed that the distribution of 
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the process variability is known or estimated (Gorissen et al., 2015). This type of 

problem is typically solved  in two stages, i.e., the design and operating stage 

(Grossmann and Guillén-Gosálbez, 2010; Pistikopoulos and Ierapetritou, 1995). In the 

first (design) stage, the optimal vector of design variables that represents process 

structure and equipment size are selected and remains fixed during the operating 

stage. At the second (operating) stage, the adjustable operating variables are 

manipulated to determine the optimal vector of operating variables that satisfies the 

process constraints. The objective here is to minimise or maximise an expected value.  

Unlike in stochastic programming in which the distribution of  the process variability is 

assumed to be known, in the robust optimisation the process variability is assume to 

ÙÌÚÐËÌɯÞÐÛÏÐÕɯÈɯÎÐÝÌÕɯÚÌÛɯÖÍɯÚÊÌÕÈÙÐÖÚȮɯÈÓÚÖɯÒÕÖÞÕɯÈÚɯɁÜÕÊÌÙÛÈÐÕɯÚÌÛɂɯɯ(Bertsimas et al., 

2010; Gorissen et al., 2015). Robust optimisation aims to find decisio n variables (e.g. 

ÕÜÔÉÌÙɯ ÖÍɯ ÛÙÈàÚɯ ÐÕɯ Èɯ ËÐÚÛÐÓÓÈÛÐÖÕɯ ÊÖÓÜÔÕȺɯ ÛÏÈÛɯ ÈÙÌɯ Ö×ÛÐÔÈÓɯ ÍÖÙɯ ÛÏÌɯ ɁÞÖÙÚÛɬÊÈÚÌɂɯ

(Bertsimas et al., 2010; Gorissen et al., 2015). A unique feature of robust optimisation is 

that the optimal solution must satisfy all the problem constraints; no constraint 

violation is tolerated. The constraints are associated with  each operating scenario. 

Robust optimisation is particularly important  if the decision maker is very risk-averse 

(Gorissen et al., 2015).  

In stochastic programming  and robust optimisation, a discrete set of operating 

scenarios is pre-specified, then a process is designed to accommodate the entire 

scenarios. The flexibility level of the design is not optimised . To determine the 

optimum degree of flexibility of a design , a trade-off between an economic objective 

(e.g., total annualised cost and net profit) and design flexibility is required 

(Pistikopoulos and Ierapetritou, 1995; Biegler et al., 1997). The higher the degree of 

flexibility, the wider  the range of operation and the less the chance of encountering 

infeasible operation (e.g., failure to meet product specifications). Therefore, the total 

annualised cost of the design increases with flexibility.  

The design methodology for a process with an optimal degree of flexibility is 

formulated as a multi -objective optimisation problem, i. e., to maximise degree of 
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flexibility and minimise total annualised cost (Biegler et al., 1997; Pistikopoulos and 

Ierapetritou, 1995). The multi -objective problem explores the trade-offs between 

flexibility and total annualised cost within the feasible region of operation.  

In general, multi -objective optimisation applies mathematical programmin g techniques 

to find optimal  solution to a problem involving multiple assessment criteria that are 

often conflicting. A key  characteristic of multi -objective optimisation methods is that 

no unique solutions exist; instead, a set of mathematically equally good solutions can 

be identified within the feasible design  space (Miettinen, 2008). The set of solution  is 

known as Pareto optimal solution (non -dominated or non -inferior solutions) 

(Miettinen, 2008). For a problem involving two conflicting performance criteria, the 

multi -objective optimisation problem can be represented as follows: 

               P1                            ÍÉÎ  Ὢὼȟώ                      

                                                ÍÁØ Ὢὼȟώ                          

                  (2.7) 

  

                                               ίȢὸȢ     Ὤὼȟώ π                

                                                         Ὣὼȟώ π     

                                                  ὼɴ ᴙȟώɴ πȟρ 

                  (2.8) 

where f1 and f2 are the scalar objectives to be minimised and maximised respectively; h 

and g denote the equality and inequality constraints that the solution should satisfy, 

respectively; x and y are continuous and binary variables respectively; In this case, f1 

and f2 are total annualised cost and flexibility level respectively.  

To solve Problem P1, a quantitative measure of flexibility is required. Swaney and 

Grossmann (1985) developed a flexibility index that can be used to quantify the 

maximum  deviation a design can accept without violat ing process constraints, e.g., 

product specification and distillation column hydraulic limits.  

Problem P1 has been used by several authors to design flexible chemical processes 

other than the crude oil distillation system. For example, Problem P1 has been applied 

to design a process consisting of a reactor, a flash drum, a purge and two pumps, with 



68 
 

variability in component fraction and kinetic parameters (Pistikopoulos and 

Grossmann, 1988); a simple distillation column with variability in feed flow rate, 

condenser and reboiler heat transfer coefficients, and cooling water inlet temperature 

(Hoch et al., 1995); a simple chemical process comprising of a reactor and a heat 

exchanger, with variability in process parameters such as temperature, flow rate, 

reaction kinetics and heat transfer coefficient (Chacon-Mondra gon and Himmelblau, 

1996); and heat exchanger networks with variability in supply and target temperatures 

and heat capacity flow rates (Chen and Hung, 2004). For problems with a large number 

of constraints, the methods for evaluation of flexibility index (Swaney and Grossmann, 

1985) can be computationally expensive to implement. Furthermore, methods based on 

flexibility analysis require the explicit form of equations representing the chemical 

process, in order to  facilitate calculation of flexibility metric, and problem objective 

funct ion and constraints. Thus, these methodologies cannot be directly applied to  

optimisation problems that are described using black box models, which is the case in 

this work.   

2.6 Concluding remarks 

This chapter presents an overview of the crude oil distill ation system, methodologies 

for the design and optimisation of heat -integrated crude oil distillation systems, and 

techniques available for process design for flexibility as well as optimisation methods.  

Various methodologies have been developed to facilitate the design and optimisation 

of heat-integrated crude oil distillation systems. However, there are still many 

important design issues that have not been addressed. 

Simplified  models are simple and relatively easy to handle numerically, although they 

produce less accurate estimate of the crude oil distillation unit performance (e.g. capital 

cost) compared to rigorous models. Therefore, simplified  models are less frequently 

used in practice. Rigorous and surrogate models have been used to optimise the crude 

oil distillation system. Rigorous models are accurate and produce realistic results; 

however, they are very complicated and, computationally demanding. These features 
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make rigorous models less suitable for optimisation purposes, especially for large-scale 

industrial problems. While surrogate models are relatively simple, robust and less 

computationally demanding compared to their rigorous counterpart, their accuracy 

typically depends on the form of the models selected and the data used to fit the 

model.  

The rigorous and surrogate modelling  approaches presented in this chapter takes into 

account only the operating conditions ( feed inlet temperature, pump -around duties, 

and temperature drops, stripping steam flow rates  and reflux ratio ) of the crude oil 

di stillation system as variables. For grassroots design purposes, the distillation column 

model should take into account not only operating conditions but also the structural 

variables (e.g., number of trays in column sections) of the crude oil distillation system. 

Therefore the rigorous and surrogate models presented cannot be applied for 

optimisation -based design of crude oil distillation units.  

Various methodologies have been presented in the literature  for the design and 

optimisation of heat -integrated crÜËÌɯ ÖÐÓɯ ËÐÚÛÐÓÓÈÛÐÖÕɯ ÚàÚÛÌÔÚȭɯ $ÈÙÓàɯ ȹȿ3ÙÈËÐÛÐÖÕÈÓɀȺɯ

design methodologies (Jones, 1995; Nelson, 1958; Watkins, 1979) apply heuristic  rules, 

empirical correlations, and simple calculations to design the distillation column, 

without taking into account heat integration within the system. Integrated design 

methods (Liebmann, 1996; Sharma et al., 1999; Bagajewicz and Ji, 2001) account for heat 

integration between the distillation column and the heat recovery netw ork, however, 

the distillation column is not optimised. While simplified models have been used to 

perform optimisation -based design of the system, their inability to produce accurate 

predictions may result to an unrealistic design.  Most of these methodologies focused 

on the design of crude oil distillation system that processes only one type of crude oil 

feedstock. Therefore, change in crude oil feedstocks can affect the system performance, 

e.g., not meeting separation requirements (product quality specific ations). Design 

methodologies (Bagajewicz and Ji, 2001; More et al., 2010) for crude oil distillation unit 

that processes multiple crude oil feedstocks are available. Based on a fixed column 

structure, these approaches identify suitable operating conditions for different  varieties 

of crude oil to be processed. However, the approach propose by Bagajewicz and Ji 
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(2001) have not considered the trade-off between capital and energy cost, and the 

column structural and operational degrees of freedom are not optimised. Therefore,  the 

approach may lead to a suboptimal design solution. Although More et al. (2010) 

presents an approach that optimises some operating variables of the system, many 

other degrees of freedom are not optimised, and heat integration is not considered. 

Therefore, the approach may lead to a design that is not energy efficient. 

Mathematical programming techniques, such as stochastic programming, robust 

optimisation,  and methods based on flexibility index analysis, have been employed to 

design chemical processes containing variables that are subject to variability. However, 

these methodologies cannot be directly applied  to a very compli cated heat-integrated 

chemical process such as the crude oil distillation system.  

Various works have applied deterministic optimisation (Basak et al., 2002; López C. et 

al., 2013; Osuolale and Zhang, 2017) and stochastic optimisation (Motlaghi et al., 2008; 

Yao and Chu, 2012; Ochoa-Estopier and Jobson, 2015a) to search for a new set of 

decision variables that improve a specific objective relative to a base case. None of the 

approaches presented has integrated the deterministic and stochastic methods to 

rigorously explore the search space of the optimisation problem . Furthermore, 

simultaneous optimisation of structural and o perational variables of the crude oil 

distillation system has not been considered. 

This research work aims to develop a systematic methodology for the design of flexible 

heat-integrated crude oil distillation systems that processes multiple crude oil 

feedstocks. Chapter 3 presents a new approach for the design of crude oil distillation 

unit using rigorous model. The methodology incorporates both structural and 

operational degrees of freedom as design variables in order to  facilitate the design of 

the complex system. Chapter 4 develops a new optimisation -based approach for the 

design of crude oil distillation units using surrogate models. Both structural and 

operational degrees of freedom are optimised. Chapter 5 presents a new approach for 

the design of flexible crude oil distillation unit that processes multiple crude oil 

feedstocks. The approach is optimisation-based; therefore, the final design is optimal. 
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The proposed method takes into account relevant operational and structural degrees of 

freedom and product quality constraints. A hybrid stochastic -deterministic approach is 

proposed to search for design alternative that is flexible and economically viable. 

Chapter 5 also presents a new scenario-based design method that handles a large 

number of operating scenarios. The approach takes into account multiple objectives 

and can be applied to  design problems formulated using equation oriented models and 

black box models. 
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Chapter 3   Design of heat-integrated crude 

éééé... .oil distillation systems using 

éééé... .  rigorous simulation models  

As discussed in Chapter 2, there are two classes of distillation column models used in 

practice to represent crude oil distillation units, namely, rigorous models and surrogate 

models. These simulation models take into account only the operational variables ( feed 

inlet temperature, stripping steam flow rate, pump -around temperature drop and 

duty, reflux ratio) of the crude oil distillation unit, thus limiting their scope of 

application. For design purposes, the distillation column model needs to incorporate 

both structural and operational degrees of freedom as variables in order to enable 

optimisation -based design of the unit. 

This Chapter addresses the first and second objectives of this research work (see 

Section 1.3), that is, (i) develop an appropriate modelling  approach for crude oil 

distillation units that take into account both structural and operational degrees of 

freedom of the distillation column. The approach explores the use of both rigoro us and 

surrogate models; (ii) propose a design methodology that incorporates rigorous 

simulation model and pinch analysis in a unified framework to facilitate the design of 

crude oil distillation systems.  Chapter 4 explores the use of surrogate models.  

3.1 Introduction to Publication 1 

This paper presents a new approach for the design of crude oil distillation unit using 

rigorous models. The modelling  approach presented in this paper builds a 

superstructure of the distillation column, taking into account b oth structural (number 

of trays in column section) and operational (pump -around duty and temperature 

drops, feed inlet temperature, stripping steam flow rate, and reflux ratio) degrees of 

freedom. The superstructure embeds several alternative designs, and it is developed 
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using rigorous simulation model available in commercial process simulator (in this 

case Aspen HYSYS). The use of the rigorous tray-by-tray column model in Aspen 

HYSYS allows the proposed approach to take advantage of the physical, transport, and 

thermodynamic property models in the process simulator to generate accurate and 

reliable results. 

The accuracy of rigorous distillation column model in Aspen HYSYS depends on the 

type of equation of state and/ or activity model (property models) appl ied. Examples of 

equation of state in Aspen HYSYS include Peng-Robinson (Peng and Robinson, 1980), 

Soave-Redlich-Kwong (Soave, 1980), Kabadi Danner (Kabadi and Danner, 1985), Lee 

Kesler Plocker (Plöcker et al., 1978), Zudkevitch -Joffee (Zudkevitch and Joffe, 1970), etc. 

On the other hand, activity models include Non -Random-Two-Liquids (Austgen et al., 

1989), universal quasi-chemical (Maurer and Prausnitz, 1978), and Margules, van Laar, 

Wilson models (Perry and Green, 2008). These models have been previously tested and 

validated over a range of conditions (temperature and pressure), components, and 

component mixtures (AspenTech, 2011). The type of property model to be used 

depends on the components of the system under consideration and the operating 

conditions. For a crude oil distillation system containing complex hydrocarbon mixture 

and water, the recommended property model is Peng Robinson (Fahim et al., 2009; 

Chang et al., 2012), and it is the model used in this work.  

In building the column superstructure, Murphree tray efficiency (Seader et al., 2010) 

related to each tray within the column is treated as a binary variable, i.e. an efficiency 

of one is specified if a tray is taÒÐÕÎɯ×ÈÙÛɯÐÕɯÛÏÌɯÚÌ×ÈÙÈÛÐÖÕɯȹȿÈÊÛÐÝÌɯÛÙÈàɀȺȮɯÈÕËɯáÌÙÖɯ

ÖÛÏÌÙÞÐÚÌɯȹȿÐÕÈÊÛÐÝÌɯÛÙÈàɀȺȭɯ(ÕɯÛÏÐÚɯÞÈàȮɯÛÏÌɯÛÖÛÈÓɯÕÜÔÉÌÙɯÖÍɯÛÙÈàÚɯÐÕɯÊÖÓÜÔÕɯÚÌÊÛÐÖÕÚɯÊÈÕɯ

be optimised. This is the first attempt to incorporate number of trays as a design 

variable in modelling comple x crude oil distillation unit using rigorous simulation 

models. 

To design the crude oil distillation system , an approach is proposed that incorporates 

the rigorous tray -by-tray distillation unit model (superstructure representation), pinch 

analysis, hydraulic model and cost model in an optimisation framework to facilitate 
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the design of the distillation system. A genetic algorithm is used to select the best 

column structure and operating conditions that minimises total annualised cost. As 

will be seen in the paper presented in this chapter, heat integration and hydraulic 

calculations are carried out in each iteration to enable the estimation of operating cost 

and capital cost respectively. This approach enables the inherent trade-offs between 

capital and energy cost to be exploited during optimisation, and thus guide the 

optimisation algorithm towards a cost -effective solution.  

The proposed methodology is applied to a case study that concerns the design of a 

refinery crude oil distillation unit that separates Tia Juana light crude oil (Watkins, 

1979) into intermediate products, such as light naphtha, heavy naphtha, light distillate, 

heavy distillate and residue. Numerical results show that energy efficient  and cost-

effective design alternative can be identified  within the solution space. The supporting 

information for this paper is presented in Appendix  A.1. 
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Optimization-based design of crude oil 

distillation units using rigorous simulation 

models 

Dauda Ibrahim1,*, Megan Jobson1, Gonzalo Guillén-Gosálbez2 

1 Centre for Process Integration, School of Chemical Engineering and Analytical 

Science, University of Manchester, Manchester M13 9PL, UK  

2 Department of Chemical Engineering, Centre for Process Systems Engineering, 

Imperial College, South Kensington Campus, London SW7 2AZ, UK  

Abstract 

The complex nature of crude oil distillation units, including their interactions with the 

associated heat recovery network and the large number of degrees of freedom, makes 

their optimization a very challenging task. We address here the design of a complex 

crude oil distillation unit by integrating rigorous tray -by-tray column simulation using 

commercial process simulation software with an optimization algorithm . While several 

approaches were proposed to tackle this problem, most of them relied on simplified 

models that are unable to deal with the whole complexity of the problem. The design 

problem is herein formulate d to consider both structural variables ( the number of trays 

in each column section) and operational variables (feed inlet temperature, pump -

around duties and temperature drops, stripping steam flow rates and reflux ratio). A 

simulation -optimization approa ch for designing such a complex system is applied, 

which searches for the best design while accounting for heat recovery opportunities 

using pinch analysis. The approach is illustrated by its application to a specific 

distillation unit, in which numerical results demonstrate that the new approach is 

capable of identifying appealing design options while accounting for industrially 

relevant constraints.  

Keywords: Process design, heat integration, genetic algorithm, grand composite curve 
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1   Introduction 

Crud e oil distillation is one of the most complex and energy -intensive separation units  

in the petroleum refining industry. The crude oil distillation system comprises a 

complex distillation unit and a heat recovery network in which the crude oil feed is 

parti ally vaporised. Figure 1 illustrates a typical petroleum refinery crude oil 

distillation system. The system includes a fired heater that typically consumes fuel 

equivalent to 1 to 2% of the oil being processed1,2. This combustion of fuel is associated 

with  high CO2 emissions and high operating costs. Extensive heat recovery is routinely 

implemented in crude oil distillation systems to reduce energy costs.  

In grassroots design, several degrees of freedom related to the column structure, its 

operating condit ions and the associated heat recovery network are subject to 

optimization. The need to account for the complex interactions between these 

subsystems makes the design of crude oil distillation columns a highly challenging 

ÛÈÚÒȭɯ%ÖÙɯÈɯÕÌÞɯȹȿÎÙÈÚÚÙÖÖÛÚɀȺɯËÌÚÐgn, the column configuration ( number of trays in 

each section of the column and location of the feed tray, pump-arounds and side-

stripper draws) and the operating conditions (feed inlet temperature, pump -around 

duties and temperature drops, stripping steam  flow rates and reflux ratios) need to be 

selected. In addition, the heat recovery network (known as the preheat train) needs to 

be designed simultaneously. In this way, the column can be designed to create heat 

recovery opportunities that can be further e xploited by the heat exchanger network. 

The design of this heat recovery network aims to identify the network configuration 

and heat transfer area that minimise the total annualised cost while accounting for both 

capital and operation expenditures.  
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Figure 1 Typical crude oil distillation system  

The operation of a standard crude oil distillation column is as follows (see Figure 1). 

Stored raw crude oil is partially heated in Preheat Train 1 and fed to a desalter, which 

removes dissolved or suspended salts from the crude oil feed 3. The crude oil is further 

heated, in Preheat Train 2 and a fired heater, before being fed to the atmospheric 

distillation column. The preheat trains use heat recovered from the crude distillation 

unit, particularly the pump -arounds, condenser and product streams. The partially 

vaporised crude oil is fed to the atmospheric distillation column a few trays above the 

bottom stage. Stripping steam is supplied to the column at the bottom stage, which 

partly suppresses the boiling point of the crude mixture an d further vaporises the 

crude oil mixture. The crude oil is separated into various fractions, such as light 

naphtha (LN), heavy naphtha (HN), light distillate (LD) and heavy distillate (HD). 

Side-strippers remove light components from side -draws using stri pping steam or 

reboilers. Pump-arounds provide internal reflux and create heat recovery 

opportunities by cooling and returning liquid streams withdrawn from the column. 

The residue from the atmospheric column contains valuable hydrocarbons, which are 

typic ally further separated in a vacuum distillation column (not shown in Figure 1).  
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Conventional design methods 4ɬ6 consider the complex column and the heat recovery 

network in separate steps, without taking into account interactions between the two 

subsystems. Various researchers7ɬ9 have applied optimization techniques to design the 

crude oil distillation column while simultaneously accounting for the heat recovery 

network. However, these approaches apply simple shortcut distillation models 7 to 

support the design task in an attempt to avoid the numerical problems encountered 

when optimising more rigorous simulation models. The use of these shortcut models 

can lead to large errors, as they often cannot accurately predict the behaviour of the 

complex crude oil dis tillation unit 8. These shortcut models are also restricted to specific 

column configurations, which limits their applicability.  

This work applies a simulation -optimization approach for the design of crude oil 

distillation units that integrates a rigorous t ray-by-tray model of the distillation unit 

implemented in a commercial process simulator (Aspen HYSYS v8.6) with an 

optimization algorithm coded in Matlab R2015a. The optimization of process 

simulation models using external algorithms was addressed in othe r works 10ɬ12, but to 

the best of our knowledge none of them applied this approach to the design of complex 

crude-oil distillation units. In essence, these approaches decouple the simulation from 

the optimization in order to simplify the modelling and subse quent optimization of the 

process model. The process model is thus implemented in a simulation package that 

solves a system of nonlinear equations, while the optimization is carried out by an 

external algorithm that seeks the best values of the independent values by iteratively 

interrogating the process model.  

As will be later discussed in the article, these approaches differ in the optimization 

algorithm employed, which can be a deterministic method (e.g. gradient based) or 

based on stochastic optimization algorithms (e.g. genetic algorithms, simulated 

annealing). Hence, when applied to the design of complex distillation units, the 

simulation -optimization approach takes advantage of the physical property and 

thermodynamic models, as well as the crude oil characterization and column hydraulic 

models available in the process simulator. These tailored models ultimately lead to 

more accurate results compared with the use of shortcut methods. In addition, the 
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rigorous simulation environment is more versatile, al lowing for a more flexible 

modelling of the column configuration. Furthermore, heat recovery opportunities for 

each proposed design were determined in this work using an open source algorithm 

implemented in Matlab 13. Following this approach, pinch analysis  was used iteratively 

to perform heat integration calculations for the designs proposed by an external 

optimizer.  

The remainder of this article is organised as follows. Section 2 reviews existing 

methodologies for the design of crude oil distillation units . In Section 3, a 

superstructure representing the crude oil distillation unit is proposed and a detailed 

optimization formulation is presented together with a customized solution procedure. 

The solution procedure makes use of readily available commercial process simulator to 

simulate the crude oil distillation column, hence avoiding the need to formulate the 

complex column using explicit equations; moreover, the process simulator 

environment is versatile and user-friendly, thus making our approach easier to  

implement in practice and accessible to industrial practitioners. Section 4 introduces a 

case study that illustrates the capabilities of the proposed design methodology. The 

conclusions of the work are finally  presented in Section 5.  

2   Previous research on crude oil distillation unit design 

In the past decades, various methods have been proposed and developed for the 

design of crude oil distillation units. Conventional methods apply heuristic rules, 

experience, empirical correlations and simple relation ships. For instance, the number 

of trays in each section of the column and the stripping steam are often estimated 

based on empirical correlations obtained from previously  established designs 4. 

Similarly, in Watkins 5 method, the number of trays in each section of a column is 

selected from a predetermined range, while the stripping steam flow is estimated 

based on product flow rates. The approaches of Nelson4 and Watkins 5 formed the basis 

for many subsequent design methodologies for crude oil distillation units that involve 

iterations and trial and error procedures. Furthermore, the heat recover y network is 
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omitted in these design approaches, which neglect the complex interactions between 

such a network and the distillation column.  

Other research has focused on developing integrated design methods that address the 

design of the crude oil distill ation unit and the associated heat recovery network 

simultaneously. Along these lines, Liebmann and co-workers 1,14 combined rigorous 

column models and pinch analysis to design a crude oil distillation unit. Their 

approach takes design decisions in a sequential manner considering heat recovery at 

each step using pinch analysis. To avoid the numerical difficulties  associated with the 

rigorous  simulation of the column, Sharma 15 proposed to use the concept of a column 

grand composite curve16. This strategy identifies the maximum amount of energy that 

can be recovered without affecting the separation. A limitation of this approach is that 

the role of the stripping steam is neglected. Bagajewicz and Ji17 focused on overcoming 

the above limitation, incorporating the effect of the s tripping steam on the maximum 

heat recovery of a crude oil distillation column and introducing the concept of a heat 

demandɬsupply diagram. This approach, however, does not account for the trade -off 

between capital and energy costs. 

To design an integrated process system, it is necessary to design the complex column 

and the heat recovery network simultaneously. For example, Suphanit7 applied the 

column decomposition strategy of Liebmann and co -workers 1,14 to develop a shortcut 

model for the crude oil distillation column. This model was then used within an 

optimization framework together with pinch analysis to simultaneously optimise 

distillation operating variables and the heat recovery network (utility demand and 

area) so as to minimize the total annualized cost. Rastogi8 extended the shortcut model 

of Suphanit7 to account for column pressure drop and pump -around location. A 

detailed model of both the heat exchanger network and the distillation column was 

incorporated into an optimization framework that optimized the column str ucture and 

operating conditions. Chen9 modified the shortcut models of Rastogi8 to allow for other 

pump -around locations and also modelled temperature -dependant properties of 

process streams undergoing phase change. In this work, the structure and operating 
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conditions of the column together with the heat exchanger network were optimized 

using simulated annealing.  

A comprehensive overview of optimization methods applied to process synthesis and 

design can be found in the excellent work of Grossmann et al.18 and Grossmann and 

Guillén -Gosálbez19. The optimization methods have been applied to design several 

chemical processess (other than crude oil distillation units) 20ɬ24. 

Several conclusions can be drawn from the literature review presented above. 

Traditional distillation design methods do not simultaneously consider heat recovery. 

Integrated design approaches do consider both, the column and the heat recovery 

network, but seldom analyse the trade-offs between capital and energy cost in a 

rigorous way. Optimization techniques have been used to design the column and heat 

recovery network 7ɬ9. However, to simplify the calculations, most of these approaches 

rely on shortcut distillation models 7 that provide less accuracy and versatility. No 

approaches have been identified that directly use rigorous distillation models for 

optimization -based design of heat-integrated crude oil distillation systems.  

This research introduces a systematic framework for the design of heat-integrated 

crude oil distillation units th at overcomes the limitations of established methods. Our 

approach applies rigorous tray -by-tray distillation column models to simulate 

alternative designs. These models are combined with a genetic algorithm that 

optimizes the column design. The number of trays in each column section together 

with the operating conditions (including the feed inlet temperature, pump -around 

duties and temperature drops, stripping steam flow rates and reflux ratios) are selected 

to minimize the total annualized cost. This cost accounts for the annualized capital cost 

and annual operating costs related to fuel consumption in the furnace.   

3   Optimization-based design approach 

This section presents a simulation-optimization based approach for the design of crude 

oil distillation  units. First, the rigorous tray -by-tray model used to simulate the crude 
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oil distillation column is discussed. Then, the mathematical formulation of the 

optimization problem is presented. Next, an approach proposed to solve the 

optimization problem is des cribed. We emphasize that we are dealing here with a very 

complex crude oil distillation system for which many decisions (including pump 

arounds, diameters and number of trays in different sections and operating conditions) 

must be optimized all together w hile considering the design of the HEN coupled with 

the unit. Developing a short -cut method for such a system is a very challenging task 

that would very likely result in larger approximation errors.  

3.1 Crude oil distillation unit simulation model 

In process design, it is crucial that models used to simulate design options are 

sufficiently realistic to deliver feasible solutions. Two main types of models are 

available for design of crude oil distillation units, namely, shortcut models 7ɬ9 and 

rigorous model s14,17. The shortcut models adapt the FenskeɬUnderwoodɬGilliland 

design equations for simple columns. These models predict the number of trays in each 

column section and operating conditions, such as reflux and reboil ratios. When 

applied to crude oil dist illation, these models are restricted in terms of allowable 

configurations and accuracy of the predictions.  

On the other hand, the so-called rigorous models apply material and energy balances 

as well as equilibrium relations in every stage of the column 25. These models provide 

more accurate predictions. However, they are more difficult to handle due to the need 

to start the calculations from a very good initial guess in order to avoid convergence 

problems.  Procedures for solving rigorous models are well established, and have been 

implemented in commercial process simulation software such as Aspen HYSYS, Aspen 

Plus, UNISIM, and PRO II. Such software allows designers to simulate complex 

distillation column flowsheets using iterative and sequential modular al gorithms. 

Here, there is no need to define in an explicit form the model equations, as they are 

already implemented in the process simulator. Simulation packages like ASPEN, 

HYSYS or gPROMS already contain specific routines to solve distillation columns (and 

other unit operations) that are highly efficient. In this work, without loss of generality, 
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crude oil distillation column under steady state. Section 3.3 presents a detailed 

description of how the rigorous column model is built.  

3.2 Heat recovery consideration 

In general, heat recovery is carried out using a heat exchanger network (HEN). After 

fixing the process configuration and operating conditions, information on process 

streams (i.e., inlet and outlet temperatures and duties of all streams requiring heating 

and cooling) becomes available. This information could be used to design the HEN, 

which determines the minimum utility requirements that will be used to evalua te the 

design options.  

In an optimization -based design, many options need to be evaluated before selecting 

the best alternative. In this context, designing a full HEN  for each potential design 

would require significant computational effort. This is becaus e the HEN design can 

itself be posed as a nonconvex MINLP problem that is per se hard to solve, mainly due 

to the presence of bilinear terms in the constraints as well as concave ones in the 

objective function 26. While there have been some recent attempts to solve the HEN 

design problem more efficiently 21, the methods proposed still scale poorly with the 

number of hot and cold streams. To overcome this limitation, pinch analysis is applied 

here. Hence, targets for minimum utility requirement are determined to screen the 

design options and propose improvements for existing designs 17. In this work, the 

grand composite curve is coded in Matlab R2015a10 and incorporated into the 

optimization procedure to calculate minimum utility requirements for the crude oil 

distillation unit. Detailed HEN design is not addressed. Nevertheless, pinch analysis is 

expected to minimize the dominant cost, i.e. fired heating, and it is well known that 

utility costs dominate distillation process economics. It is anticipated that the 

annualized HEN capital costs will be relatively similar for different column designs. 

Future work intends to account for HEN details.  
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3.3 Crude oil distillation column modelling ï superstructure 

formulation 

In this section, the column superstructure used to design the crude oil distillation 

column is developed. A process superstructure considers (ideally) all possible design 

alternatives simultaneously. The superstructure of the complex heat -integrated crude 

oil distillation column is built  treating Murphr ee tray efficiencies27 as binary variables 

that can activate or deactivate trays (following the approach developed by Yeomans 

and Grossmann28 and Caballero et. al.10). In this approach, a column section containing 

ÌØÜÐÓÐÉÙÐÜÔɯÚÛÈÎÌÚɯÐÕÊÓÜËÌÚɯÈɯÚÌÛɯÖÍɯȿÛÌÔ×ÖÙÈÙàɀɯÛÙÈàÚɯȹÈÓÚÖɯÒÕÖÞÕɯÈÚɯÐÕÈÊÛÐÝÌɯÛÙÈàÚȺɯ

ÈÕËɯȿ×ÌÙÔÈÕÌÕÛɀɯÛÙÈàÚɯȹÈÓÚÖɯÒÕÖÞÕɯÈÚɯÈÊÛÐÝÌɯÛÙÈàÚȺȭɯ.ÕɯÈɯ×ÌÙÔÈÕÌÕÛɯÛÙÈàȮɯÔÈÚÚɯÛÙÈÕÚÍÌÙɯ

takes place between the vapour and liquid phases; it is assumed that phase equilibrium 

is achieved. On a temporary tray, no mass transfer takes place; the temporary tray is 

modelled as a by-pass with inputs equal to the outputs in each phase. In a commercial 

process simulator, trays can be modelled by setting appropriately their Murphree tray 

efficiency27: zero (when the tray is inactive) or one (when it is active). On both types of 

trays, the material and energy balances and equilibrium relations are solved. However, 

on a temporary tray, no separation takes place. Figure 2 illustrates the superstructure 

for modelling the crude o il distillation column.  
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Figure 2 Superstructure representation of crude oil distillation column  

As shown in Figure 2, the column superstructure consists of eight sections: five 

sections in the main column and three side strippers. The initial number of trays in 

each column section can be selected using traditional methods4,5 or shortcut models 7ɬ9. 

In the superstructure, each section is set up to ensure that more trays are available than 

will be needed. During optimization, the optimal number of trays in each section will 

be determined. The minimum possible number of permanent (active) trays in the 

superstructure is 18; 12 in the main column and 2 in each side stripper. These trays are 

located at points where a stream enters or leaves the column.  

3.4 Mathematical formulation  

The crude oil distillation column design problem can be formulated as an MINLP 

model (M1) based on the superstructure proposed in Figure 2: 
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where ʕ is the objective function; Ὤ denotes the set of implicit equality constraints 

representing material, energy and thermodynamic equations embedded in the process 

simulator; Ὤ  is the set of explicit equality constraints while Ὣ  is the set of inequality 

constraints. ὢ , ὢ and ὢ  are the feasible sets for the decision variables, namely ὼ ,  ὼ 

and ὼ , which represent dependent, structural  and operational variables, respectively. 

The dependent variables are calculated by the simulator for fixed values of ὢ and ὢ . 

For the crude oil column design problem, the inequality constraints can be more 

specifically formulated as in Model M 2:  
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where ὔ is the number of active trays in column section i; QPA,j and ЎTPA,j are the duty 

and temperature drop of pump -around j; FS,k is the steam flow rate of stream k; R is the 

overhead reflux ratio; TF is the feed inlet temperature; and Ὕυ  and Ὕωυ  are the boiling 

temperatures of product ὰ at 5% and 95% vaporization (according to ASTM standards; 

note that other specifications could be defined in a similar way); ὔ is the number of 

product ὰ.  

In Model M2, Ὣ to Ὣ are bounds on structural and operational variables, while Ὣ and 

Ὣ represent constraints on product quality in terms of ASTM D86 boiling temperature: 

T5 and T95. To enhance the numerical robustness of the model, it is advantageous to 

include the l atter constraints (product quality) in the objective function via penalty 

terms21. The resulting formulation, M3, is:  
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     ʕὼȟὼȟὼ ɩ ÍÁØ πȟὫ                                           σ 
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where Ὣ denotes the inequality constraints Ὣ  and Ὣ ; ɩ  is a scalar parameter that 

scales the magnitude of the violation of constraints, and hence ensures that the product 

quality specifications are maintained during the optimization . Note that this penalty 

term can be easily formulated using slack variables. 

3.4.1 Objective function 

The aim of the optimization -based design task is to search for those process structure 

and operating variables that best achieve a desired objective. Different types of 

objective functions are relevant, for example, net profit, energy cost, net present value 

and total annualized cost. The most appropriate objective function to be used depends 

on the aims of the design. For grassroots design, a suitable objective is to minimize the 
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total annualized cost (TAC), as it accounts for the trade-off between capital investment 

and operating expenses. The total annualized cost is the sum of the total operating cost 

(OC) and annualized capital cost (ACC) (Smith, 2005):  

                                                     Ὕὃὅὕὅ ὃὅὅ                                                                             τ 

For the particular case of crude oil distillation unit, the most significant operating costs 

are the cost of stripping steam and of hot and cold utilities, usually fuel for fired 

heating and cooling water. Pinch analysis allows minimum utilit y requirements to be 

calculated29 for a given set of heating and cooling duties. In this way, opportunities for 

heat recovery are accounted for during the design optimization.  

                          ὕὅ ὛὝȢὅ ȟ ὌὟȢὅ ὅὟȢὅ       ὲ ς                                             υ 

In Eq. (5), ὅ , ὅ  and ὅ  are the unit costs of stripping steam, hot and cold utili ties, 

respectively; ὌὟ and ὅὟ are minimum hot and cold utilities, respectively , while n 

represents the number of stripping steam streams associated with the column.  

The annualized capital cost is the installed cost of the column shells (Ὓ) and the 

installed cost of trays within the column, ( Ὕ), multiplied by an annualization factor 

(A f)29. 

                                              ὃὅὅ Ὓ Ὕ ὃz                                                                           φ 

 

                                            ὃ
Ὥρ Ὥ

ρ Ὥ ρ
                                                                                    χ 

 

where Ὥ is the interest rate and ὸ is the plant life.  

 

3.4.2 Cost models 

The column shell and tray costs are estimated using the correlations proposed by 

Guthrie 30. 
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where M&S Index 2011 is the Marshall and Swift chemical equipment cost index for year 

2011 (4th quarter)31 allowing costs to be updated from 1969 (when the M&S Index was 

280); the cost is updated to current equipment cost using Eq. (10); Ὀ is the sectional 

diameter of the column, Ὄ is the sectional height, which depends on tray spacing and 

Ὂ is the column cost factor, which depends on the column material of construction 

and column operating pressure. 
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The tray cost factor Ὂ  depends on the type of tray, tray spacing and material of 

construction.  
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where CEPCI2011 and CEPCI2014 are the chemical engineering plant cost index for year 

2011 (4th quarter)31 and 2014 (4th quarter)32 respectively; Cost2011 is the equipment cost 

for year 2011, calculated using Eq. (8) and Eq. (9). The M&S Index2011, CEPCI2011 and 

CEPCI2014 are 1536.5, 590.1 and 575.7 respectively. 

The column diameter and height for a specific type of internal are determined using 

hydraulic models, as discussed in the Section 3.4.3. 

3.4.3 Hydraulic models 

In crude oil distillation column design, hydraulic analysis is required to identify a n 

appropriate  tray selection and to avoid entrainment (or jet flooding), weeping, coning 

and downcomer flooding 25. Different design and types of trays and packings (e.g. sieve 
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tray, valve tray, high capacity tray) have a specific range of satisfactory vapour and 

liquid flow rates, defined by upper and lower bounds 25,33,34. Therefore, the column 

diameter has to be sized appropriately to accommodate the flows of vapour and liquid 

in the column, and also provide enough active area for mass transfer25, without 

incurring an excessively high pressure drop. The tray spacing needs to be chosen in 

order to avoid entrained liquid  jetting onto the tray above 25. Furthermore, the 

downcomers should have sufficient area to allow liquid flow 25. Established methods 

are available for column sizing and selection of internals 25,34,35, many of which have 

been implemented in commercial process simulators. In this work, the column sizing 

capabilities implemented in the tray sizing utility of Aspen HYSYS v8.6 are employed 

to carry out the hydraulic calculations. The column diameter obtained from this 

calculation, together with the column height (determined based on permanent trays), 

are used to determine the purchase cost of the column.  

3.5 Solution procedure 

The optimization of the column naturally leads to an MINLP problem containing 

nonlinear equations and binary as well as continuous variabl es. Various approaches 

have been developed and proposed to solve this type of problem. These approaches 

can be broadly classified as deterministic (also known as gradient-based) methods36ɬ39 

and stochastic (a class of derivative-free methods) methods36,40. A detailed  discussion of 

MINLP algorithms can be found elsewhere 36ɬ41. Note that our MINLP is not defined in 

a fully explicit manner, but rather via both explicit and implicit equations implemented 

in the simulator and in an external modelling system (i.e ., Matlab). MINLP problems 

encountered in the simulation -optimisation of chemical processes can be solved by 

several methods. Caballero et al.10 applied gradient -based methods to solve one such 

MINLP, which was decomposed into two levels following an outer -approximation 

scheme. In this work, at the lower level continuous variables are optimized for a fixed 

design by solving an NLP problem in which a gradient -based NLP solver iterates with 

the simulation model. At the upper level, new designs encoded in the values of the 

binary variables are generated by solving an MILP. This MILP is constructed by 

linearizing the nonlinear equations at the optimal solution of the NLP. These two levels 
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are solved iteratively until they converge towards a final solution consid ering a given 

stopping criterion. Stochastic approaches, on the other hand, attempt to solve the 

MINLP in a simultaneous way by optimising the decisions variables all together and 

without relying on gradient -based methods. The standard approach here is to combine 

metaheuristics (e.g. simulated annealing, genetic algorithms, etc.) with the simulation 

model and let them iterate for a given time.  

Since Model M3 is nonlinear and non-convex, standard deterministic methods can only 

guarantee convergence to a local optimum. Furthermore, obtaining the derivatives of 

the NLP might be difficult, which may lead to convergence problems when applying 

gradient -based NLP algorithms. To overcome these limitations, this work applies a 

stochastic global search method to solve M3 based on genetic algorithms (GA). We 

note that, despite the various strategies implemented in the GA, this approach is 

unable to guarantee convergence to the global optimum. Global optimality can only be 

ensured using deterministic methods, but these require the explicit form of the 

equations. In our case, these equations are implemented by the simulator, which does 

not provide direct access to the equations.   

The strategy proposed to optimize Model M3 is presented in Figure 3. The proposed 

approach combines a rigorous tray -by-tray crude oil distillation column model with 

cost models, a heat recovery model and a hydraulic model within a unified framework. 

This strategy searches for the best configuration and operating conditions that result in 

minimum t otal annualized cost. The crude oil distillation unit is simulated using a 

rigorous column model implemented in Aspen HYSYS v8.6, while the optimization 

algorithm is coded in Matlab R2015a. The exchange of information between Matlab 

R2015a and Aspen HYSYS v8.6 is established using the automation client-server 

application provided by Matlab R2015a.    
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Figure 3 Framework for the optimization -based design of crude oil distillation unit  

The implementation of the proposed framework is carried out in two steps.  The 

distillation column superstructure is first defined in the Aspen HYSYS environment. 

This superstructure contains dependent, structural and operational variables that will 

be optimized by the GA. The mixed integer non -linear programing model (M3) is 

solved by a GA implemented in Matlab. The overall MINLP model includes equality 

constraints (explicit and implicit), inequality constraints, bounds on optimization 

variables and the objective function. The interface established between Matlab and 

Aspen HYSYS facilitates the transfer of the data required to calculate the objective 

function value and to assess whether the constraints are met. Once the model is 

defined, and the link between Matlab and Aspen HYSYS has been established, an 

optimization algorithm ( e.g. genetic algorithm) is employed to search for the optimal 

column design. 
































































































































































































































































































































































































































