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Abstract

. -Transaminases are a class of flePendent enzymes which catalyse the reversible
transamination reaction between carbonyl compounds and amine doRoeviously,

. -transaminases have beemidely applied inthe production of chiral aminedhe
expansion ofhe substrate scopé 2 ¢ | N#&rsaminases provides the potential to

exploit new biocatalytic synthetic routes involviregicselective amination.

Y2y 3 (KS Ay A G ArdnsamiBeefrtudt dii#irénespecies Ta wiktype
. -transaminase fronBacillusmegateriumwasidentified to possessigh activity A
characterisation systerwas developedor screening activity of substrates towards
both amine and carbonyl substrates towardBM-. ¢.! Meanwhile, & (9-
aminotetralin based assay was developdmeet the requirement of screening

aromaticcarbonyl compounds.

Several dicarbonyl compounds were determined to be accepted by BM Zch g K A
were siWbsequently applied inthe synthesis ofN-heteroaromatic compounds.

I ¥4 SNB | Niuasaminase fnediated biocatalytic approachestfa synthesis

of substituted pyrazines and pyrroles were developed respectively and a self
sufficient amine donor apply@a reversible amine functionality shuttle system was

discovered.

14



Declaration

| hereby declare that | am the sole author of this thesis. No portion of the work
referred to in the thesis has been submitted in support of an application for another
degreeor qualification of this or any other university or other institute of learning. |

understand that my thesis may be made electronically available to the public.

15



Copyright Statement

i. The author of this thesis (including any appendices and/or schedaléhis thesis) owns
the certain copyright or related rights Y A G 6 G KS & had giseMThedUditetsity | Y R R

of Manchestercertain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full orertracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the Univeysitas from time to time. This page must form part

of any such copies made.-transaminases

iii. The ownership of certain Copyright, patents, designs, trademarks and other intellectual
LINELISNII &8 60GKS aLYy(dStffSOGdzrf t NRLSNIthesi®, | YR |
F2NJ SEIF YL S 3INILKE YR (1 06fS&8 0awSLINRRAZOGAZY
not be owned by the author and may be owned by third parties. Such Intellectual Property

and Reproductions cannot and must not be made available for ubewtithe prior written

permission of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercializationof this thesis, the Copyright and any Inéeltual Property and/or
Reproductions described in it may take place is available in the University IP Policy (see
http://documents.manchester.ac.uk/display.aspx?DoclD=24420 any relevant Thesis

restriction declarations deposited in the WhAENBAG& [ AONI NBX ¢KS |y
regulations (http://www.manchester.ac.uk/library/aboutus/regulations) and in The

' YAOSNEAGEQa LRfAOE 2y tNBaSyidldAz2y 2F ¢KSaa

16


http://documents.manchester.ac.uk/display.aspx?DocID=24420

Acknowledgements

Firstly | would like thank my supervisor Prof Nicholas Turner, for giving me the
opportunity to work on this project angroviding mewith precious information

| 6 2 dmansaminase and constctive adviceand supportA special gratitude goes

to Dr. Anthory Green for his scientific inputyribiant ideas, numerous advicand

unending support.

| also want to thank members of the Turner/Flitsch group, particularly Matthew
Thompson and Sebastian Cosgrove for their constant support, delicious foods and

great fiendship making my time at Manchester thoroughly enjoyable.

Finally, I wish to thank my family, in particular my parents and all my close friends for

their continuing support and encouragemehtoughout the four years.

17



Abbreviations

CALB
e.e.
PLP
PMP
NAD+
LDH
GDH
PDC
FDH
ADH
AmDH
4-AAP
NADPH
EPLP
EPMP
MAO
de
GC
HPLC
CuSQ@
AAO

HRP

. -transaminae

Candida antarcticéipase B

Enantiomeric excess

Pyridoxalp -@hosphate

Pyridoxaminep -@hosphate

Nicotinamide adenine dinucleotide

Lactate dehydrogenase

Glucose dehydrogenase

Pyruvate decarboxylase

Formate dehydrogenase

Alcohol dehydrogenase

Amine dehydrogenase

4-Aminoantipyrine

Nicotinamide adenine dinucleotide phosphate
Michaelis complex with enzymgyridoxat5'-phosphate
Michaelis complex witenzymepyridoxaminep -Phosphate
Monoamine Oxidase

Diastereomeric excess

Gas chromatography

High pressure liquid chromatography
Copper(ll) sulfate

Amino acid oxidase

Horseradishperoxidase

18



ATAS50
ABS
BCA
BSA
Ars. TA
C\V ¢!
BM-. ¢!
AD. ¢!
Mm-DTA
TBHBA
4-AAP
PBA
uv
GCMS
GCFID
GGCEl
'H NMR
13CNMR
FID
HEPES
LB

oD
DCM

r.t

rt

. -TA fromPseudomonasp.

Absorbance

Bicinchoninic acid

Bovine serum albumin

. -transaminase fronArthrobacter sp.

. -transaminase fron€hromobacterium sp.
. -transaminase fronBacillus sp.

. -transaminase fronAlcaligenesp.

. -transaminase fronMarinomonas sp.
2,4,6 Tribromo-3-hydroxybenzoic acid
4-aminoantipyrine
1-methyl3-phenylpropylamine

Ultraviolet

Gas chromatographymass spectrometry
Gas chromatographyflameionization detector
Gas chromatographyelectron ionization
Protonnuclear magnetic resonance
Carbonl13 nuclear magnetic resonance
Hame ionization detector
4-(2-hydroxyethyl)1-piperazineethanesulfonic acid
Lysogew broth

Optical density

Dichloromethane

Retention time

Room temperature

19



Chapter 1: Introduction

1.1 Biocatalysis

Biocatalysiss an approachto chemical synthesigsingnatural catalysts, usually in
the form of isolatel enzymes omwhole-cell, which is becoming a new trend in
syntheticorganic chemistryEventhoughtraditional chemical synthesis will remain
the mainstream approach for chemical production in the future, thember of

biocatalytic application has increased tremendus last decade, due to several

advantages obtained from the nature bibcatalysts

Chirality isa keyfeature of manypharmaceutica, as it cannfluence theactivity of

a drug. More specifically, s known that whilst one sterecisomer @f drug may
provide desirable effecfsthe other one may be inactive or even be potentially
harmful. Since 1992, the Uniteéflates Food and Drug Administration (FDA) and the
European Committee faProprietaryMedicinal Products has implementeds#ict
regulation thd both enantiomers of drugs must beharacterigd individually? In
1997, the UnitedStatesFood and Drug administration introduceddfast track,
singleisomek program which accelerated the application of singkaetiomer drug.

All these regulatory issuedave become a strong driving forceFor developing
efficient routes to enantiopure materials, thenarket of chiral compounds is
expanding at 7%% annually, which results from increasing demand for
enantiomeri@lly pure compounds in the pharmaceutical industriyhe application
of biocatalystgo produce chiral compounds hasoven to be of great benefit to the

pharmaceutical industry.
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As an important component in the toolbox of synthetic chemistry with exceptional
chemao, regio-, andsterecselectivity, biocatalysts prade new approaches to replace
conventional chemical steps with biocatalytic methdd@othlow value chemicaf$

and high valuepharmaceuticabuilding block withmultiple chiral centres® have

beenproduced onlargescaleusing biocatalytic routes

Employing biocatalysts can also provide both economic anenvironmental
advantages. First of alcompared to traditional reaction systesn biocatalytic
reaction systera use aqueous conditioa rather than organic solventthereby
reduangsolvent cost and the potenti&ér environmentabollution at the same time.
Secondly, the applicatioof biocatalyss meetsthe demand of a greener production
environment be thatfrom saving energy (mild reaction temperature and pressure)
or avoidng toxic transiton metal catalysis (enzymseare a recyclable and
environmentally friendlycatalysts due to its biologidaorigin). All hose influences
are includedn the Efactor conceptwhich is defined as the mass ratio of waste to

product in a given synthetic sequent® Biocatalysis also offer opportunities to

AYLINR @S GKS WwWadSLl SO2s/ reRam@pledy alléviatiyigitieS G A O

need for costly protection/deprotection sequencd@dierefore valuable reactor time
can be freed upwhilst simultaneously improving the overall atom economy of the
synthetic routes Finally, biosynthetic methodologies caprovide access to
WNBEGNRaBYUKSGUAO RAAO2yySOilA2yaQ GKI G
approaches, thus offering the potential to develop more streamlirmdes to high

value targets-!
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Thefeasibilityregarding the application of biocatalysts in industrial productias
increasel in the lastdecades. One of thenost successful cases of biocatalytic
application for industrial production ighe use of transaminassto produce chiral
amines? The improvement of biotechnologye.g. rational design or directed
evolution) enhances this trendas well. Although co-solvens (e.g. DMSO)can
decreag enzyme stability andave a negativeféect on downstreamprocesing, the
addition of caesolvent is still essential in the biotransformatifor the purpose of
increasingthe solublity of organic compounds imqueous system. In order to
minimiee the neg@tive influence of ceolvens towards enzyme protein
engineering becomes one of theststrategies to increase the stability of enzyme in
the presence of csolvent. For exampleseveral . -transaminase have been
successfullyengineered tomaintain acceptable activity irthe presence of 50%
DMSO" Enzyme immob#ation also offers a potential route to improve enzyme
stability under process conditiort4 Recently more and more commerdighvailable
biocatalysts have been develop&ameet the requirement ofndustrialproduction
with the aidof enzymeimmobilization'® The most noveapproach to increase the
volume of biocatalytic reaction is to develop or exploit new types of enzyimere
and more novebiocatalysts(e.g.amine dehydrogenasé!’ andimine reductas#)
are now being combined in cascade reacspnvhich cancatalysenew types of

chemical reactins

1.2 synthesis of chiral amines

The main value obiocatalystsis to produce those chemicals which are difficult to
synthesse using traditional chemical method®ptically active intermediates are
valuable chemical building blocks for th@harmaceuical industry and agro-
chemistry Biocatalytic procedures were applied to replace synthetic strategies in the
production of various keyntermediates in the pharmaceutical industry??? For
example,as a widely used antibiotic, the productionadphalexin is now produced
via two acylasecatalysedsteps usingAdipyt7-ADCArather than thirteen chemical
steps usingpenicillin G(figure 1).23
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1.2.1 Classic approaches to produce chiral amines

1.2.1.1Kinetic resolution of racemates by crystalli sation

The major routeto produce chiral amingin industrial productiontoday is still
resolution ofracemic mixtureby the selectivecrystallization of diastereomergalts
with the addition of oné* or a mixture of chiral carbglic acids (scalled Dutch
resolution¥® (Scheme L However suitable chiral carboxylic acifisr each racemic
amine need to be investigated case by casad stoichiometric or super
stoichometric amountsof acids are requiredMoreover, in several cas®s’ the
enantiomeric purity of resolution is not high enough to meet pharmaceutical

applicationstandard.

ldtFraaArd NFYOSYFGS NBazfdziazy

+ +
NH, R* E?z R* NH, R*
+ 2 OH——> o | + 2 -
R{/E\Rz R3J\ﬂ/ R17OR2 R3l\ﬂ/ R1TOR? RSl\N/O
o o o
crystalline in solution

.05 dzi OK NBaz2fdziazy

NH, ' NH;
N — v
0.0 X 0.0 X
R P
o

0" oH o
(R,S)-1 2X=H 2X=H
3X=Cl (8X1-1 3x=cl

4 X =0OMe L 99%e.e  4X=0OMe
1 equiv. 1 equiv.(1:1:1 mixture) (5:5:1 mixture )
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1.2.1.2 Chemical synthesis of chiral amines

Apart from the resolution of racemic amine mixtuseby crystallzation of
diastereomeric salts, the most established method for production of optically pure
amines is reduction of a precunseontaininga C=Ndouble bondScheme 2?2 There

are two chemical methodfor the reduction of iminesi) asymmetric hydrogenation

of imines or enamine derivatives¢ludingusing late transition metal conbgxes

with chiral ligandg® reduction of enantiopuge imines using zinc borohydritfeand
condensationof ketones withappropriate amines); ii) the asymmetric addition of
carbanions to aldimine¥:3?> From the perspectiveof industrial production,the
challenges mainly lie in the synthesis of the prochiral precursor and in the cleavage
of the auxiliary group X frorthe protected amine tagive access tthe free amine?
Within the manufacturing scheme, more disadvantages of conventional chemical
approach to synthesis chiral ameinwill emerge. First of all, asymmetric
hydrogenation is usuallgonductedunder high pressure using toxic transit metal
based catalystwhich may contaminatéhe product during productionWhenthere

is aninadequate stereoselectivitwithin the reaction,additional purification steps

are necessaryo upgrade both enantiomeric excessd) and chemical purity®
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1.2.2 Biocatalytic approaches to produ ce chiral amines

The significant developmestin biotechnology related to enzyme screening and
protein engineering (i.e. directed evolution and ratiodakigr) hasacceleratedhe
identification and production of novel enzymé&dit has led to a dramatic expansion

of potential synthetic strategiessingbiocatalystdor the production of chiral amines.

1.2.2.1 Production of chiral amines via kinetic resolution

Previously thebiotechnological process to resolve chiral ansifieom its racemic
mixture could only be &hieved by hydrolase enzymesg. lipases). Recently a range
of novelbiocatalyss have been exploited or engineered to meet the demafchiral
amine synthesis'? 34! These new biocatalystsrovide more options to produce
enantiomericallypure aminesviakinetic resolution, such asidation/reduction and

transaminationprocesses

The main biocatalysts applied for kinetic resolution of racemateare hydrolases,
especidly in industrial biotransformation$*3 Lipase are the mostpopularoption
among hydrolases:irstdiscoveed in 1930s, lipasghaveundergoneapproximately
85 years of developmerand applicatiorf* Similar toother hydrolytichiocatalysts
the biotransformatiors catalysedby lipase can be carried out in low/non agueous
conditions, which provides the possibility timansform hydrophobic substrates (i.e.
aromatic amines) with a high substratmncentration***¢ One of thecommon
approaclesto produce chiral aminewith CAEBisto resolve one mantiomer from
racemic aminesisingan acylating agent (usually metlyacetate esterScheme
3).35
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A typicalexample employing this proce$sr chiral aminesynthesiss the production

of (9-1-phenylethylamine using lipase, which is patented by BASElemes).3> 3°

In a single step reaction9fphenykthylaminewith high enantiomeric purity (>99.5%
e.e) along withcorrespondingamide from R)-amine (>99%.e) is producecdn a
multi-ton scale® According to all obtained results, the application of biocatalysts in
combination with an agylating agent stillcannot be surpassed.Comparatively
methoxyacetate e®r turned out to be the best optiowlue to the sufficiently high
enzymatic rate’® The rest ofdevelopedprocesse3 #”to produce chiral amine with

lipase havesimilarmechanisrs.
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Acylase, as antarnative hydrolytic enzymehas also been employddr the kinetic
resolution of racemic aminesAn aminoacylase | fronAspergillus melleusvas
employedfor the resolution ofavariety of arylalkyleminesand amino alcohol$ The
best case was observed in the production &-(-aminoindane witha 53%

conversionand 72%e.e.(Schemeb).

%NHZ i HN)K/OCHT, EN 2
e.e.=72%
Hsco/}(ocH3 CH3OH Conv.= 53%
0
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There are two advantages of hydrolasg no requirementfor cofactor recycling, ii)
the versatilityresulting from thewide substrate selectivity.All those éatureshave
made hydrolytic enzymes particularbpitable for the large scaleproduction3” 49
However, those approaches meanwhile suffer frdong reaction timeand

comparatively lowenantiomericpurity.5%>2

Another group of enzyngeappliedfor the production of chiral aminevia kinetic
resolution are . -transaminase. Transaminasesre compatible with both kinetic
resolutionand asymmetric synthesis. Comparatively, the former approach is more
thermodynamically favoured than the latter ofe.In the late 199@, Celgene
published the first patent to apply transaminaskr the industrial production of
chiral amines’® When low molecular weight aldehydas usedchs amine acceptog

2.5 n¥ scale haveen achieved oa range ofliphaticand aromatic aminesScheme

6).

NH,
3\ + /\70
R2

i) NH, 0}
z + k +  _A~_NH;

R R1;\R2 R'

O NBaz2fdziAzy dzaiy3 QINESLEDERYM
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For the purpose of solving those problems, several different technologiese
developedsoon afterwardsFor transamiation approaches, stoichiometric or super
stoichbmetric amouns of amine donorsare required to drive reactios to
completion.In order tomeet this requirement, the first challenge was increase
the solubility of amineacceptor After balantng both solubility and kinetic
preferences, pyruvc acid wasdetermined to be thebest amine acceptor fothe
kinetic resolutioncatalysed by transammases at high substrate concentratiétirhe
first case applying pyruvic acid for the diit resolution catalyselly . -transaminase
was the production of R-methylbenzylamingScheme7). Subsequently, yruvic
acid becaméhe standard amine acceptor faoine kinetic resolutioncatalysed by - -

transaminase?: 36. 41, 5%7

©/\ )S(OH WOH ©)k @/\

wSl OlAzy OHNRVEAXRY I AS

{OKSIYSt NERUGOTS @K 2FSy T 8t | WAL { @Al MY IdiA S i/
I OOS LI 2598 (UGiNG fysd YAY Il 45 o

As an alternative strategy tacrease the solubility of substrates, thddition ofco-
solvent (e.g. DMSQGY %8 or MeOH%) also has been widely used in
biotransformation catalysedby - -transaminase However, those organic solvents
usually decrease the activity of enzynhe order to meethis requirement Codexi$
hasengineereda series of. -transaminases (Including botl®{ selectiveand (R)-
selective transaminasgsvhich show the excellenttoleranceto the presence of

DMSO.
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Since the transamination reactionatalysedby . -transaminase is aeversible
reaction in order toachievethe highestyield of productsthe unfavourablekinetic
equilibrium of the transamination reactiomeeds to be overcome as wellhere are
two by-productremoval systemthat have bendevelopedthe chemical byproduct
removal system anthe physical byproduct removal system. Both strategiesuld

be employed inboth kinetic resolutiorandasymmetric synthesiapproaches.

Thebasisof the chemical byproduct removal system is to pfy another reaction to
consume the byproductin the biotransformation systemlruppoet. al. developed

a transaminase/amino acid oxidase coupled enzymatic cascade reaction to resolve
one of the enantiomers frorthe racemic mixtureutilisingcommercially available -
transaminases tlle (9-selective transaminase ATA113 and the (R)-selective
transaminase ATA17) Scheme8).*! Theby-product alanine wasoxidisedback to
pyruvate using the amino acid oxidase in the presence of oxygen. A variety of
aromatic amines have been successfully produgedthis method anda 50%
conversion and >99%nantiomeric excesse(e) have beenachiewed in the

production of both(S- aminesand R))- amines

NH, i) o) NH,
—_— +
R13\R2 ; § R1MR2 R1J\R2

0 NH,
(@] (o]
H202+NH3 ¥ o

ii)

2
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Compared tothe chemical byproduct removal systemthe physical byproduct
removal system hasariousoptions. Shiret. al. have developedtwo methods to
continuously remove the product or the iproduct from the transamination
reaction system: thebiphasic reaction systeth and the enzymemembrane
reactor.®? However, both systemssuffer from a commondrawback:the enzyme

inactivation resuling from emulsion formation.

Thebiggest challengef the kinetic resolution approachestise maximum yieldf a
single enantiomefrom a racemic mixtureannotgo beyond 50%. In order tsolve
this problem,Funkeet. al. developeda racemization procedure was involved to
recycle the undesired enantiomer?3%5 which makesthe whole reactionmore
sustanable and meanwhilelowers the total cost. This advanced reaction system
combining kinetic resolution with racemisation tise dynamic kinetic resolution,

whichcouldachievel00% yieldtheoretically®®

Reetzet. al. proposed an advanced dynamic kiivetesolutionmethod by combining
a lipase fronCandidaAntarctica(NOVQ@YMSP43%) with Palladiun’ Palladium was
used as theatalyst for the racemsation ofthe unreactedenantiomer, whichhoosts
the final yield to 75% 7% Scheme9).
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1.2.2.2 Production of chiral amines via asymmetric synthesis

Compared to kinetic resolution, asymmetric syntheseshistter strategy to produce
chiral amins with a 100% theoretical yieldn the biocatalyticapproachesseveral
enzymesneet the requirementof the produdion of chiral amineswith high optical
purity, including amine dehydrogenasg!® 6’ imine reductase®’® and

transaminase.33 772

Transaminass are the standard biocatalyss for the industrial production of chiral
amines via asymmetric synthesi (Scheme 0). Originally, transaminases were
applied to produce amino acidria asymmetric synthesid 2 73lts application was
extendedto the production of chiral amines by Celgefiby the end ofthe 198(s. In

the Celgene system for the production of chiral aminesasymmetric synthesis,
isopropylamine was used asnine donor(Scheme 1). Even to the preent, this
reaction system is still widely used in the industrial production of chiral amines.
However, due to theunfavourableequilibrium a large excess of amine donass

requiredto drive the reactions to completion.

o) NH, i) NH,

R1KR2 * R3J\R4 R’
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In the late 199@, Shiret. al. developed anotheasymmetric synthesisystemusing
L-alanine asamine donorcataly®d by a ©-selective transaminase froribrio
fluvialis”>7¢ Simlar to Celgen@ systemthe unfavourablesquilibriumresultingfrom
severeproduct inhibitionwas observedBased on this reactionubsequentlyseveral
multiple enzymeby-product removalsystems were developed to overcome the
unfavourableequilibrium (Sheme 12).5: 75 77In a common situation, hily yields
were obtained using th pyruvate removal systemidoweverundesiredoy-products
were producedwhen the activity of substrates towards transaminase was low. More
specifically, when the reaction rate of the transamination step was tlog/reaction

of ketone substrates catalysed by the lactate dehydrogenas@dyruvate

decarboxylasevill became the dominanteaction
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In order to make tansaminasscompatible withindustrial production, a variety of
commercialy available transaminases werengineeredby Codexd® the most
successful case applying engineered transaminase for the production of
pharmaceutical compoursicontaininga chiralamineis the synthesis oditagliptin
(Scheme B).2° A (R-selective transaminase was created from a variant of-ATA
by Codex®with the collaborationof substrate wiking, computationaimodelling
and mutation approach after3rounds of evolution. A 92% assay yield and >9%.95
e.e. was observedin the investigation usingthe best variant under optnised
conditions.Meanwhile, t alsodemonstratedthe potentialto usedirected evolution
or rational design tocreate desirednovel biocatalys which are compatible with

process conditions

F F
WF (R)-T ianse/PLP noE ]
=lransamianse Y
N N N N (R)
ST N TR
FsC NH, o F5C sitagliptin
)k 99.95% e.e.
{ OKSW KS o0A20FGFHEeGA0 aGtSL) (2 aayiNKFakxAh
| 2R$EA &

Amine dehydrogenase was firgngineered froma wildtype "-amino acid
dehydrogenase byBommarius et. al. and produces chiral amines fromthe
transformation ofketone precursorsuppliedwith anitrogen source’® Compared to
transaminasesreactiors catalysedby amine dehydrogenaseneedto be coupled
with a cofactor regeeration system using another enzyme e(g. glucose
dehydrogenase (GDHy) formate dehydrogenase (FDHJhe most famougase to
solve the problem wapublishedby Turneret. al in 2015¢ It was aduakenzyme
hydrogenborrowing cascade reactioestablishel on the couplingof two types of
enzymesanalcohol dehydrogenas@DH (from Aromatoleunsp.,Lactobacillusp.,
or Bacillussp.) with an amine dehydrogenaé@mDH)engineered fronBacillussp.)
(Screme 14). This methodconverteda range of aromatic and aliphatic alcohwi®

the correspondingenantiopure aminesn up toa 96% conversiowith 99%e.e.
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However, the final concentratianof amine producs werelow. Afterwards, two
simiar dualenzyme biocatalytic hydrogen borrowing systems were developed using
different combinations of ADHs and AmDHSs: i) one using an Migpé&hdentleucine
dehydrogenase froniExiguobactertium sibiricuman@s.euDHDM) coupledwith a
nonstereoselective alcohol dehydrogenase fr8tneptomyces coelicol¢6cCRADH)
was developed by Gawei et. al;’?ii) the alternative using an NADRI¢pendent
secondary alcohol dehydrogenase frdimermoanaerobacter etnolicus(TeSADH)
coupledwith an amine dehydrogenases (ChiAmDH) was developed by Thomjpson
al.% The bottleneck for the industrial application of amine dehydrogenases is the

poor substrate scope and comparativeétyw activity.
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The common limitation for both transaminases and amine dehydrogenases is that
both approachesre usuallycompatible withthe production of primary chiral amines.
However, in pharmaceutical production, chiral secondary and tertiary amines are
equally asmportant. In order to meet this demand,a new type of enzymewas
exploited recently which catalysereductive aminationso-calledimine reductases
Theywere usedto produce secondary amines bgductionof imine intermediats.

As aminadehydrogenases, imine reductases also nae@xternal cefactor recycling
system.Initially, only alimited number of aromatic ketones and primary amines
could be taken as substraté$ After the discovery of a reductive aminase from
Aspergillus oryzaeby Aleku et. al,®! the substrate selectivity was expanded

dramatically Schemel5). However, in the majority of reactions catalysed by this
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reductive aminasehigher equivalentof amine substratesvere still essential to

achieve higheconversiors.
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1.3 Transaminases

Transaminases ara group of PL¥ependent enzymescatalysinga transamination
reaction between amingand carbonyl substratesTheoriginalrole of transaminase

iIs to produce amino acigdshowever after numerousiew transaminases were
discoveredor the wild-typesengineered, the substrate selectivity of transaminase
was expanded significantly. Thereaftethet application of transaminase was

extended to the industrial production of chiral amino acids and amines.
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1.3.1 Transaminase mechanism

As important enzymes related to human metabolism, themechanism of
transaminases &s been wellstudied®?®° The well-known ping-pong mechanisnis
widely used to explainhe transamination reactioncatalysed by transaminase
(Scheme ®). There are two half reactions to recycle the-factor PLP. Initially, an
internal Schiffbase between an active site lysine residue and the aldehyde group of
the PLP is formed to give theFEPcomplex Then the aminalonor replaceghe
lysinein the active site to generatan external aldimine. After a series of internal
proton shifts, aketimineis obtained andubsequentiyhydrolysedo release a ketone.
Meanwhile, the formation of a Micldiscomplex between the MP and a
differentamine acceptor leads to threecondhalf of the transaminatiomeactionand

eventuallyregenerate the EPLP®
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1.3.2 Active site and stereoselectivity of transaminase

A variety of crystal structur€&® and active site model8 have been produced to
explain themechanism obubstrateselectivity and stereoselecttyidisplayed by -
transaminaseComparativelythe two-binding active site model proposed by Séin

al. is the mostwidely accepted model Rigure 2).°° More specifically this model
demonstrates that there are two binding pocketstire active site of transaminase

a large (L) pocket to trap the carboxylate group and a small (S) pocket to
accommodatehe side chain. Due to the strong repulsion &arboxylateobserved

in the (S) pocket, the (S) pocket plays thexidive rolein the determination of

substrateselectivityand stereoselectivity.
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1.4 Synthesis of heterocyclic compounds using J -transaminase .

The collaborationof chemical syntheticstrategieswith diverse biocatalysthas
achieved numerousynthetic routes which are impossible or difficult to be achieved
by organic synthesisnly.' Meanwhile, he fast expansion dahe biocatalysttoolbox
also offers more possibilites to redesign the existing synthetistrategies
Transaminasesvere originallyused for the asymmetric synthesis of optically pure
chiral amines starting from prochirdketones3?® 61 8. 986 Since engineered
transaminases with better substrate selectivity were created gradually, several novel
reactiors or disconnectios were discoveed, which make fuluse of the excellent
region and stereoselectivity ofransaminase Compared tahe chiral aminesthe
heterocyclic compound®(g.2,5-disubstituted pyrrolidinesare moremportantand
valuable scaffolds in pharmaceutical productftdfd? A series ofnew biocatalytic
synthegsmediated by transaminase have beestablishedo produce heterocyclic

compoundsl,l, 24,91, 10003

The first exampleof |y -TAMediated heterocyclicsynthesiswas disclosedby
Kroutilet. al. in 2012193 Several 2,8liketones werechosenas the model substrates
to prepare optically pure 2;8isubstitutedpiperidinesviaa transamination reaction
and a spontaneous cydison followed by a diastereoselective hydrogenation using
Pd/C catalys{Scheme I). A variety of. -transaminasewith different regio- and
sterecselectivity wereused for the transamination reactionf alifferent carbonyl
groups on 1,&liketones, thereby producing distinptperidineproductsin excellent

e.e.andd.e.
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The gnthesis of several chiral 2disubstitued pyrrolidines from 4;diketoneswas
achieved using a novel on@ot . -transaminasémonoamine oxidase cascade
reactiors in 2013 Gcheme 8).1° Similar to the synthesis of 2disubstituted
piperidines'®the initial two steps ofhis cascade reacti@was the combination of
atransaminationstep catlysed by transaminasenda spantaneous cyctation step.
However, due to the low diastereoselectivity in the reduction step, M@ariants
were usedin combination with NHIBH; to solve this problem. After optinsation,
excellent @antio- and diastereoslectiviies(>99%e.e, >98%d.e.) were obtainedn

a preparativescale.

0 . NH;
R1WR2 0 1WR2 i) 1@ SR I Qg W
R R R N
0 o) N H

R? >R!
.

iv 1'& 2
R N R

H

Y  QUENRNEN HANMEES ©5 | k[ 53 SOBROL WS YATH W
i APBO N PG (RN AR Y ©

OKSwY | @KIe2r GAO | LILINZI OK 1R2 BHXzal XKBA (adedy:
FaloéiyamN yal YAFULIEABR YRAYi2K YAYS 2EARFaSo

42



Due to thereversibilityof the transamination the reaction can also l#esignedrom
the deamination directiof! 192 194Greenet. al. demonstrateda single enzyme
system for thesynthesisof isoindolefrom commercially available-xylylenediamine
dihydrochloride, which was initially designed farhigh-throughput screeningo
ARSY (A T e-trams&ndinadsbtiRity (Schemel19).%! It is the first casefor the
synthesis ofheteroaromatis using. -transamnase and this process can dy be

performed from the @aminationdirection.
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1.5 High-throughput screening for J -transaminases

After a library of mutants generated from protein engineeritige high-throughput

screening of enzymes isn essential stepto select variantswith desired
characteristics The conventional strategy for screeningl OUG A @A GASa (261
transaminasesthe determination of the conversiorend the enantioselectivies of
transamination reactio via high performanceliquid chromatography (PLC) or gas
chromatography (GGY°> which is notcompatible with the screening ofa large

volume library (usually Ta10° variants)'°¢ In order to meet this demand, a variety

of rapid highthroughput screening methodwere developed (e.g. plet-based
microfluidic screeningassay®”1%8, solidphase colorimetric assayf?).!'? All assays
mentioned in ths section are specifically applicable to screeactivity of

transaminases omedium scalel0? variantg based orthe 96-well plate platform.

The first 96well plate spectrophotometriscreening assayp identify the activity and
enantioselectivity of. -transaminasesvas developed by Kirgt. al. in 200411 A
staining solution of CuS@nd MeOH was added to react witie amino acidoroduct

to form a blue copper complex whietaseasily detected and quantified usiadJV-
Vis spectrometewith awavelength 0595 nm Scheme B). Even if thadivergence
between theresults from this method andthe HPLCanalysisis less 10%, three
drawbacls are still obviousi) the whole processeeds 20 h of reaction time, which
is time-consumingji) It is an endpoint assayence this methoadannot be applied
for kinetic studyjii) a phosphatecopper complex will be formed in the cell cultures

to give negative results, if no centrifuge andlgsisprocedurewere applied.

o
NH, i) o]
R3 R3
R1J\R2 : %OH R1KR2 : %OH
o]

monitor at A = 595 nm
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A acetophenonebased higkthroughput screening method was proposed by
Bornscheueeet. al. in 2009(Scheme 2).1'2 The targetcompound(acetophenone)
hasa characteristi@bsorptionat 245 nm Gmparatively, theabsorbancestrength

of acetophenonds much higher thathe other constituentsin the reactionsystem
Thus, the reaction ratevasmonitored viathe absorbancevariation along with time
courseat 245 nmusinga 96-well plate spectrophotorater. This methods designed
to characterse the activity of amine acceptor&gtones, aldehydes, or ketacidg
towardstransaminasesHowever there aretwo noticeablelimitationsfor this assay

i) the addition of enzyme maaffectthe background absorbancedye tothe inherent
absorbance of proteinii) this methodis not compatible with thescreenng of

acetophenone derivativesndsome other aromatic ketong®.g. propiophenonsg.

NH,
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Truppo et. al. developed a fast and sensitive assay to screen activity and
enantioselectivityof transaminases usingn amino acid oxidas€éAAQO)and horse
radish peroxide (HRPB¢heme22) coupled systenmin 2012!%2 The basisof this
method is tooxidisethe generatedalanine tothe correspondingmine acid by an
AAQ Meanwhile, thegenerated H.O, subsequently reaed with pyrogallolred
catalysed byorseradish peroxidage form acomplexwhichcan be colorimetrically
detectedat 540 m. Thesensitivity and accuracy of this method dreth excellent
owing to the high enantioselectivity of amino acid oxidasédditionally, this
screening assals compatible with botHiquid phaseand solid phaseSince it isa
multiple enzymereactionsystem all reaction solutiors needto be prepared freshly.
Based on this system,raumberof similarcolorimetric assays were developeaging
different colorimetric compound$'# In contrast to the acetophenonbased
screeningassay this metlod is applied for the screenng activities of amine

substrates toward$ransaminases
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1.6 Aims of the project

There are three projects that will be described in this theBe aims of th@rojects

are as follows:

i) Discover transaminase candidatesich can use -hlanine as amine donor to

synthesis chiralR)-amines.

A transaminase from metagenomics has revealed a novel observation that it can use
either L= or D-alanine as amine donor to produce amines with corresponding
enantiomeric forms. Thushis transaminase demonstrates attractive potential that

its variant can use-alanine as amine donor to produc@{amines.

i) Develop a rapid methodology for the characterisation of substrate scope towards

transaminases

A highthroughput characterisa A 2y a@aiaSyY FT2NJ aONBSyAy3
transaminases will be developedhis system is a combination of two -@ll
platform-based screening assays and it must be compatible for screening activities of

both amine and carbonyl compounds (includingraatic ketone substrates).

iii) Develop new biocatalytic approaches to the synthesis of heteroaromatic

compounds for industrial application

There is great interest in the development of transaminase mediated reactions for
the synthesis of complezompounds (ay. pyrazines). As mentioned iecdion 1.4,
several heterocyclic compounds have been synthesized . -transaminases

mediated approaches, which have proven its potential.
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Chapter 2: Results and discussion: activity of ATA-50 and other
wild -tyD A -trnsaminases

2.1 Introduction

Aspart of the EU FP7 funded BIOINTENSE programme, wedtavlyinvestigated
an (9-4 St S OUAKTA50).provided by e Ecta®ATAS0 was isolatedfrom
Pseudomonaspand has a molecular weigbt ~48 kDalUsingL-alanine as an amine
donor, tK A atransaminase is able to catalyse the amination of benzylacetone
producethe corresponding9-amine (>99% conversion; 9@&). Intriguingly, ATA
50 has also been shown g@nerate the correspondindl-amine when Balanine is
used as the amine donaabeitwith a slower reactiomate (Scheme 2B Our primary
objective was to characterise the specific activity and substrate scope @ T¥e
employed aracetophenonebasedscreeningassay to determinghe specifiactivity
of ATA50. Al other reactions described in this chapter weewaluated using
benzylacetone as the standard ketone substradeallow direct comparison with
other enzymes usedn parallel,our project partner at theUniversity of Groningen

wastasked withthe gructural characteriation of ATA50.
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ﬁ + ©/\/\
(0} o
(S)-amine > (R)-amine
OH OH
NH, O
O NH,

+

0] O
\)k (S)-amine < (R)-amine
Y~ "OH OH
NH, o]

{ OKSIWS ¢ KS y2@St LKSYyRXBF2YAYKL
lepn OFGFf@aSR GNYyal YAYlLIGA2Y N

48



2.2  Aims of the project

There is a vast difference in the costlefand Dalanine for 100 gramsSigma
Aldrich®, charges £62.5 and £391 respectivelfyengineered ATAO coulduse k
alanine asan amine donorto generateenantiopure R-amines total production
cost for (R-aminesvia the ATA50 catalysed transamination approagould be
dramaticallyreduced The investigation described in this chapter therefore had two
amines i) to confirmthat ATA50 can useeither L- or D-alanine asan aminedonor,

andii) to determinewhetherany other. -transaminase$ave this capability

2.3 Determination of ATA-50 activity

The experimental procedure to determine the activity of AAAwas divided into: i)
determination of protein concentration (purifieATAS50), andii) determination of
specific activityThet A SNOSu . / | whidhBs(ad dssay wideli liséd for
colorimetric detection and total proteimuantitation, was used to determine the
concentration of purified ATA0. An acetophenonebased spectrophotometric

screening assay?as described inegtion 1.5, was used to measuaetivity.

2.3.1 Determination of protein concentration

ABovine serum albumi(BSA) solution was diluted to form a series of standeaiitis
different concentrations The protein standards were then added to a 96|\p&ite

and inawbated for 5 minat 30 °C prior to the measurementAfter the addition of a
colorimetric reagentthe purified ATA60 solutions ljoth undiluted solutionand a

10X dilution) andthe BSA standard solutions were simultaneously measured using a
spectrophotometric plate readerFollowing BeeLambert law, all data points
beyond the accuracy scope of measurement @ABSwere eliminated. The
calibration curve for the determination ofrptein concentration was plotted in the

form of absorbance ersus the concentration of BSA solutionkigure 3: a
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correlation between the concentration of protein standard solutions and their

absorbance at 562 nm was indicated.

0.8 -

0.6

0.4
y = 0.0013x + 0.1298

R2=0.9998

Absorbance (AU)

0 T T T T 1
0 100 200 300 400 500
Concentration of protein (ug/mL)
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Equation 1 for the calibration curve of protein concentratiavastherefore obtained

0O 8 6 8 N 8 Equationl

Snce absorbanceof the undiluted solution of purified AFBO was beyond the
accuracy scope of measuremetite 10X dilution wassedto determine theprotein
concentration The concentration of purified AT30 was calculated as follesvC =
2.98 + 0.037 m/mL. All subsequentreactiors were carried out using this batch of
purified ATASO.
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2.3.2 Determination of specific activity

As with other spectrophotometric measuremest the key constant for the
calculation of enzyme activitypy spectrophotometric assayis the extinction
coefficient The siginal acetophenondased assay was measuresinga standard
spectrophotometer which has a broader response region of absorbance than
plate reader To make this assamore compatible with the96-well plate platform,
an indicating wavelengtbf 290 nm was chosen rather than 245 nfo. obtain the
extinction coefficient of acetophenone 90 nm, aseries of acetophenone standard
solutions of varying concentrationswere screened using a plate reader with
wavdength of 290 nmA calibration curve ohcetophenone concentration at 290 nm

wasthen plotted by using all data poistwithin the accuracyegion(Figure 4.

y =0.1092x + 0.3243
R2=0.9975
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The BeeiLambert equation was used to calculate the extinction coeffigjent
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I R A Equation2

The slopeof the calibration curve of acetophenone was obtained friéigure 4

311 o nwe- R Equation3

The path length (Ifor awell with 100 pL solution in a 96 wedlate is 0.2929 cm.
Havingsubstituted| = 0.2929cm into Equation 3 the extinction coefficient(¥) for

acetophenone at 290 niwascalculated- 0.37Yai @Y

The next step was to measure the initial rate of acetophenone generation in the
transamination reaction catalysed by ABB. Three reactions were measured in
parallel using a 9@vell plate reader onl00 pL scale. The average data points of
triplet measurements were used to plot the reaction rate curve of transamination
reaction catalged by ATAOQ. The initial 18 secondperiod was determined to be
the linear region in the reaction rate curve. Under the assumption that the
concentration of substrate isver-saturatedcompared to the concentration of ATA
50, the reaction within this ligar region was defined as agudofirst order reaction.

The initial rate of ATAO catalysed transamination reaction was then calculated from
Chart An Figure 5 Initial rate = slope = 9.98 x1QUnit = Abss))
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The calculation procedure for the specific activity of ADAis shown as follows:
Firstly,Equation 4was obtained from the definition of initial rate:
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The specific activity of AFB0 wascalculated: Specific activity of ABA = 1.84 0.02
A =
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2.4  Stereoselectivity of ATA -50

To confirm thenovel observation that AFBO can use either enantiomeric form of
alanine asan amine donor the influence of amine donar with different
enantioselectivity on the ATFBO catalysed transamination reactions was
investigated. The LDH/GDH coupleddrgduct removal systeri (Chart A Scheme
12in Sction 1.2.2.2was used to overcome thenfavourablereaction equilibrium.
Conversion and enantiomeric exces®() weredeterminedby normal phase HPLC

analysissquipped with a chiral column.

Based on HPLC traces, Ad0Awas determined to be capable of usaither L-alanine
or D-alanine asan amine donor but with different reaction eficiency. The
enantiomers of botramine producs were detected When l-alanine was usedhe
ketone substrate was fully consumed af®amine was the dominant product with
a 90%e.e. (Figure §. In contrast the reaction using flanine wadar slower, with
only a67% conversiomplemened over 96 h Furthermore, R-amineproduct was

obtained as the major product with the féower e.e.of 28% Figure 6.
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D-alanine ATA-50 96 hours
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IntheY S OK I y A-tiavisardifase; aamine product iseleased from an external
aldimine intermediate, which has no influence on stereoselectivity of the amine
product Scheme 2182 A reasonable hypothesiwould be that thisvariationin the
enantioselectivityof amine producs results from the dissimilareaction rates when

using different amine donors.
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R "R?

external aldimine internal aldimine
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2.5 Time course study

In orcder to evaluate the difference ireaction efficiency when using ar D-alanine
asan amine donor, a morepecific timedependent study othe ATA50 catalysed
transamination reaction was carried oufThe conversion ane.e.were determined
by normal phase HPLahalysisequipped with a chal column at 24, 48 and 96 h
(Figure 8. When Lalaninewas used as thamine donorthe reactionwascomplete
within 24 h(>99% conversion90% (S-e.e). Reactions withD-alanine proceeded
more slowly angbroducedthe (R)-amineas the major enantiomer (289%e.e), with

the observed optical purity independent of reaction conversion.
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2.6 Comparison between ATA-u m Al A OE-#andaflitade® 5

The second aim dhis projectdescribed in this chapter was to determine whether

I y& 2 d{rd&iihases could alsse either Lor D-alanine asanamine donor

Five wildi @ LIS N} yal YAYFA4Sa | yR (g 2trar®@@mnas&NIOA | f €
with different stereoselectivity were chosen to compare with A\(the sources of

all . -transaminasesre presented in Gapter 5). Since AFAL3 and ATA 17 were

providedby Codexis@s crude cell lysaggstandardisatiorof enzyme concentration

was difficult.Therebreall . -transaminase this sectiorwere prepared in the form

of cell lysates with an equal wet weight. Reacstiavere carried out oanalyticscale

(1 mL) andhe conversion and stereoselectivity wedeterminedby normal phase

HPLC analysis equippetth a chiral column.

Each transaminase was evaluated with botland Dalanine.With the exception of
ATAS50 which could utilize both-Land Dalanine as an amine donor|lla -
transaminaseglisplayed a high level of specificity in favour of one enangiowf
alanine (kalanine for the §-selective TAs,Blanine for the R-selective TAs). When
benchmarking ATAQ activity against other transaminasesallhnine was used for
comparison with the $-selective enzymes while -&anine was used for the

comparison with theR)-selective enzyme@-igure 9.
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In the group of H-selective transaminases, both ABA and ATAL13 showed
excellentactivity and similar stereoselegtty towards benzylacetone.h& majority

of wild-(i & LJ&ansaminases cannot compete with the two engineered ones in
terms of conversion or enantioselectivit@reaterstereoselectivitywasobserved in
biotransbrmations catalysed by two wildi & LJ&ansaminases (AD ¢ ! I ¥R
. ¢! 0 X in bokhicds&the conversios were much lower tharATA50. The most
promising wildii & L38ansaminase wasra(S-selective transaminase froBacillus
megaterium, which hasgood activiy but a slightly decreased enantioselectivity

compared to ATAO.

In the R-selectivetests, the performance of ATB0 wasfar worse than theother
. -transaminaseswith the commercially availableR|-selective transaminase (ATA
117) demonstratingthe best activity and enantioselectivity. fle wildtype R)-
selective transaminase (VHDTA) demonstrated a bettee.e. but slightly lower

conversion compared to AT30.
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2.7 Conclusion

The novel phenomenon that AT50 can use both-land Dalanine agnamine donor

has been confirmed. The reaction using -Blanine asthe amine donor was
dramatically faster, and a hypothesis has been posited that the variation in the
enantioselectivity of amine products results from the dissimilar reaction rates when
usingdifferent amine donors. Studies on ABA andseven. -transaminasegfive
wild-type and two commercially availal)|eletermined thatonly ATAS0 was capable

of using both enantiomeric forms of alanineasamine donor. Future work will be
carried out to mnvestigate the relationship between enantioselectivity and
enantiomeric form of amine donor, and how ABA.is able to use both enantiomers
as an amine donorThe crystal structure of ATA0 and more acurate kinetic

investigatiors will berequiredto conirm the hypothesis

R YYSNDA I f t étranka@inadsds (AFB0Sand . ATAL13) were generously
providedby Codexis® as a gi@nce the originaénzymestocks had beendepleted,
the cost of continuing to use theommercial enzymewas prohibitive The use of
wild-type transaminases is a good optioas replacement.An (S-selective
transaminase fronBacillus megateriunwasdetermined to be the most promising
wild-(i & LI8ansaminaseand thereforeselected as the target enzyme for further

characterisationas describednh Chapter 3.
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Chapter 3: Results and discussion: Characteris ation of an J -
transaminase from Bacillus megaterium

3.1 Introduction

One reasorfor characterisingenzymes is to understandoperational windows and
optimal operating conditions.As a reversible dual substrateeaction, the
transamination reactiorcatalysed by -transaminassis influenced by both amine
and ketone substrateg he substrate scope of-transaminase can be measured by
conventional HPLC/GC analysis or predicted dymputational simulation
modeling.1*>118 However,a more practicalhigh-throughput method is required to
characterise th& substiate selectivity 96-well plate based assays acenvenient

optionsthat produce reasonable degreesaxcuracy.

3.2 Aims of the project

InordertoSadl 6f AAaK  @GSNERFGATS dandamitaSeda2 T2 NJ
comparison was made of dligh-throughput screening methods recommended in
variousliterature reviews 11¥114. 119/ A v O S & dzo-thangsthina$es are2divided
into amines and ketones, the asay for eachreaction partnermust be considered
separately There are several afipable methods for screening the activity of amine
substrateg’: 111, 11314 and an establishedAO/HRP coupledcreeningassay was
selected'® None d existing assays can be used $areering all types ofketone
substrate For example, the acetopheno#tsed highthroughput screening
method*'? canonly beemployad with low-absorbing kéones, aldehydesnd keto
acids Aromatic amines aregenerally harderto produce using traditional organic
synthesis, which makes this type of aminenore valuable. Thereforethe
investigations discussed in this chapter had taoines: i) to develomg new high

throughput assay foscreeninghe high-absorbingaromatic amine acceptst andii)
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to characterise botramine and ketone substrates for th@omising wildtype - -

transaminase fronBacillus megateriurselected inChapter 2.

3.3 L-AAO/HRP coupled assay for screening the activit y of amine
donors towards BM-J 4 !

The LL-AAO/HRP coupled ass&gr screeningthe activity of amine donors is an

optimised version othe screeningassaydiscussedn Sction 1.5'*whichproduces
higher accuracy ando backgroundsignal in the absence oftransaminas¢Scheme
25). The colorimetric agentaisedin this assay are 2,4,bBribromo-3-hydroxybenzoic
acid (TBHBA) andaminoantipyrine (4AAP) Sincethis BM-. TA is a $-selective
transaminasean L-amino acid oxidase fror@rotalus adamanteug/asusedas the

coupling enzyméo catalysethe cascadeeaction

0,
||| |VV

monitor at A = 510 nm =———— H,0,

NH

o

(e}

wSl OlA2y AGEYyRASAGNFS ol Nd¢ =D e RV BRSO | TR A A BA K
H3C CH3

{ OK éHths hSNDRE shk|l wt O2dzLI SR dABR2 NR WS i NSO
GNF yalaorayl a8
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3.3.1 Investigation into the linear dependence of oxidative reaction s
catalysed by L-AAO

Assays were carried out as described in the experimental section based on literature
precedent. Enzyme (TA) concentrations were <10% of the substrate concentrations,
across the range of substrate concentrations udgsksed on previous literaturehé
L-AAQHRP assay for hydrogen peroxide formation and detection was assumed to be
fast compared with the transaminasatalysed transformatiofA!*4 The observed
increase in reaction ratwith increasing substrate concentration demonstratbe
validity of this assumptiorin order to determine an appropriate range of substrate
concentration, aninitial investigationof the L-AAO/HRP coupledssayusing E

alanine as substrate was carriedut (Scheme 25

NH, . NH
/\(OH ! )S(OH
(¢} ( ; (0]
ii,iii,iv .
O, H,0, ———— monitor at 2 = 510 nm

HC  CH
Br O Ny

e g0
wSI OlA2y AGER YR kBNI2 @HA OSROBW t Br 3 0 P

{ OKSWBt | hk !l wt O2 dzLJ ISRAOMOA K ANV W HBNIKE NI (G S P
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The reaction demonstrated ischeme 26can be simplified usinghe following

formula:

Al A" 4 A# AS uu A% Equation10

Where A = alanine, B QG = Pyruvic acid, D 3®4 and E = colouredompound.
Assuming the concentration of.CGand alanine is in excess compared to the
concentration of AACthe reaction is a pseudo firstrder reaction with respect to

alanine.Based on thislefinition ofthe initial rate, Equation 11was obtained:

— E! ) Equation11

Where (1) is the initial rate, [X] refers to the concentratioof the corresponding
compound,(K) is the rate constanof the oxidative reaction catalysed by AA®hich
has units of 3. Sincethe ratelimited stepin the system is the AAO stephe
generation of E idinearly dependant on the consumption of ABased on this

assumption Equation 12was obtained:

-0— -— Equation12

Equation 13wvas obtained byearrangingequation 12

— -0— Equation13
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After substituting Equation 13into Equation 11, Equation 14was obtained

— -0— E! ) Equation14

Becausda) and(e)are constants, the relationship betwedme initial rate (I) andthe
generationrate of Eislinear. Thus the generation rate of£@[E])/dt canbe used to

indicate the initial rate of reaction.

All assumptions made above were confirmed by the AAO&dRPledreaction using
L-alanine(0.5 M)asasubstrate(Figure 10. After 5 minthe cascadeeactionattained

its equilibrium and thdinearresponse regiomwf initial rate wadrom 5 to 30 min.

3.0
2.5
2.0

1.5 1

absorbance

1.04

0.5 1

0.0 4

0 5 10 15 20 25 30
Time (min)

CA Id2NBE Ay S| NI NBE LRWRBKISE BMRKS wt Oz BIRG My
aup

Five L-alanine solutios with different concentrations(0.5 M, 0.25M, 0.125 M,
0.0625M and0.03125 M)were then measuredparallel. All fivecurves of the initial

ratesversusl-alanineconcentrationsvere linear(Fgure 11).
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Usingthe initial rates offive reactionsobtained fromFigure 11a curveof the initial
rates versusthe concentrates of substratewas plotted The correlationbetween the
initial ratesandthe L-alanine concentrationgaslinearand showsxcellent accuracy
(Figure 12. Thusthe concentrations of dalanine from0.03125 M to 0.5V were
determined to be suitable for theeAAO/HRP coupled assegnductedon a 96well

plate platform
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3.3.2 Screening activity of amine substrate towards BM-5 4 !

To screerfor activityof amine substratéowardsBM-. TA apanel oftwenty amines
includingthree cyclic amines anthree non-chiral amineswere characterised by the
L-AAO/HRP coupled ass@yble 1. In total, sixteenamines wereletermined to have

been accepted by BM ¢! @ ¢ KS A YA GAL fetwddn@Bine2ahd G KS
pyruvic acid was set as the standdrdlative activity =100%) equal t®.208x 10°

(Unit =Abss?Y).

NH2 NH2 NH2
1 2

NH, NH,

NH
NH, NH, NH, g 2 NH;

©/'\ C|/©/'\ ©/'\/ ©/\/'\

4 5 6 7 8
NH,
/?\/O G \/\/’\'t2 /@/k HO/,.QO,NHz
~
H,CO

Br
9 10 11

NH,

12 13 14
> NH2 NH2 NH2
' NH,
Coorm ' 0 O Co
F
15 16 17 18 19 20

¢l oMeK S LI ySt 2F LR adyddF GING W A yFainzya N

All relativeactivitieswere calculatedby comparingcorresponding initial rateand
the initial rate ofstandard reactionChart A Table2). Amine donor candidates were
pre-screened with a EAAO to confirm there had been farmation of DAla. Amines
1 and 2 demonstratedexcellent activity consistentith previous studiesith the
2 (I K Srhidsaminaseg® 101, 118, 12021 Amine 2 was determined to be the best amine
donor for BM. ¢ .!All of the substituted methylbenzylamine (4, 5,9, 13 and 19
displayedactivity towards BM. ¢ .IMethylbenzylaminederivatives substituted by
the electronwithdrawinggroups(5, 9and 19) showedcomparativelyhigherrelative

activitiesthan those substituted bythe electron donating groupéL3). Amines 7 and
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16 showed the least activity:irsce their deamination product are aldehydesthis

wasexpected

Amine 15, which has a similar structure to amideshowedno activity This reason
might be becauséhe adjacenthydroxyl group blocked the binding between amine
and EPLPcomplex thereby preventingurther reaction.In a previous investigation
on the substratescopeof ATA113''4 amine 20 has beenreportedy accepted by
ATA113. Howeverin this study amin€0 demonstratednegativeactivity towards
BM-. ¢ !Based oratwo binding pockemodel,®° the naphthalenegroupmay have
been too largeo be accepted by the-pocketat the active site 0BM-. ¢ IThe most
surprisingresult wasthe detection of no activity towards BM ¢ ! BNiRe Y2
Two amines (Z2pentanaminé® 122123 and 2heptanamind?+129 with a simiar
structure toamine12 havepreviouslybeenreportedasbeingaccepted bya S @ SNJ- €
transaminasesMoreover,amine4, which has a less foldable side chain than amine
12, hasbeen determinedo be accepted byBM-. ¢ .INo reasonable explanatiofor

this result has been determinedfromthe group of cycliamines (3, 11and17), no
activity was detected in the reaction of amind7. Comparedto reactions using
amines 3 and 11, the ketone product of amin&7 is the mostthermodynamially

unstable.

A characterigtion table was then established Table 2), with amine substrates
categorised into foucolor-codedgroups basd on their relative activitiesthis table

couldbe expandedn the future through thescreeningf the otheraminesubstrates
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A)

B)

NH, NH,
Br

2(100%) 9 (94.13%)
OE O St tOSIAIDA G &

NH, NH,

sslealive

1 (68.68%) 4 (59.54%) 19 (78.63%)

D2 2IROG A DA G &

5 @*g&@«% e

3 (40.64%) 5 (48.00%) 6 (35.21%) 8 (37.21%) 10 (30.76%)

11 (35.27%) 13 (39.78%) 18 (37.37%)

20 (27.63%)
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