Stochastic beam equation of jump type:existence and uniqueness

UoM administered thesis: Phd

  • Authors:
  • Ziteng Li

Abstract

This thesis explores one kind of equation used to model the physics behind one beam with two ends fixed.Initially, Woinowsky Krieger sets a nonlinear partial differential equation (PDE) model by attaching one nonlinear term to the classic linear beam equa- tion. From Zdzislaw Brezezniak, Bohdan Maslowski, Jan Seidler, they demonstrate this model mixed with one Brownian motion term describing random fluctuation. After stochastic modifications, this model becomes more accurate to the behaviors of beam vibrations in reality, and theoretically, the solution has better properties.In this thesis, the model includes more complex noises which cover the condition of ran- dom uncontinuous disturbance in the language of Poisson random measure.The major breakthrough of this work is the proof of existence and uniqueness of solutions to this stochastic beam equation and solves the flaws of previous work on proof .

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date1 Aug 2018