Phase switching behaviour in lead-free Na0.5Bi0.5TiO3-based ceramics

UoM administered thesis: Phd

Abstract

This PhD project is focused on three lead-free ferroelectric solid solutions, which are specifically Na0.5Bi0.5TiO3-KNbO3(NBT-KN), Na0.5Bi0.5TiO3-NaNbO3(NBT-NN) and Na0.5Bi0.5TiO3-BaTiO3(NBT-BT), to evaluate the effects of composition, electric field and temperature on structural and electrical properties. Novel observations of both reversible and irreversible electric field-induced phase switching were made in both NBT-KN and NBT-NN ceramics.The NBT-KN solid solution is the primary focus of this thesis. All compositions were observed to be cubic in the as-sintered, unpoled state. However, a well-defined ferroelectric hysteresis P-E loop was obtained for compositions with low KN contents, indicating that an irreversible phase transition from a weak-polar relaxor ferroelectric (RF) to a long-range ordered metastable ferroelectric (FE) state had occurred during the measurement procedure. Both the unpoled and poled ceramic powders were examined using high resolution synchrotron XRD. For the poled state, a rhombohedral R3c structure was identified for compositions with low KN content, confirming the occurrence of the irreversible electric field-induced structural transformation from cubic to rhombohedral. In contrast, a cubic structure was retained for high KN contents, giving rise to reversible phase switching evidenced by constricted P-E hysteresis loops. Similar behaviour was observed for NBT-NN system.An 'in-situ' electric field poling experiment was conducted using high energy synchrotron XRD. In certain NBT-KN compositions the structural transformation, from cubic to mixed phase cubic+rhombohedral and finally single phase rhombohedral, occurred progressively with increasing cycles of a bipolar electric field. Similar behaviour was observed for NBT-NN compositions having low NN contents. Furthermore, the distributions of domain orientation and lattice strain over a range of orientations relative to the poling direction were determined for NBT-KN, NBT-NN and NBT-BT ceramics exhibiting the rhombohedral phase.By combining the structural information with the results of dielectric and ferroelectric measurements, a phase diagram was constructed to illustrate the influence of temperature and composition on the stability of the metastable ferroelectric and relaxor ferroelectric states for the NBT-KN system. Furthermore, the phase transition temperatures obtained from dielectric measurements were correlated with the ferroelectric and thermal depolarisation characteristics for each of the NBT-KN, NBT-NN and NBT-BT systems.

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date1 Aug 2017