ORBITAL AERODYNAMIC ATTITUDE CONTROL FOR SPACECRAFT

UoM administered thesis: Phd

  • Authors:
  • Zhou Hao

Abstract

This dissertation introduces novel techniques for exploiting the environmental aerodynamic forces to actively control the attitude of the spacecraft operating in the lower and middle thermosphere. It includes both simulations and real spacecraft attitude determination and control subsystem development, which provide a complete picture of the application of the aerodynamic forces to benefit space missions that are operating very close to Earth, as well as contribute to the knowledge of rarefied gas aerodynamics in the lower and middle part of the thermosphere. The research starts by reviewing the current progress of thermosphere science and rarefied gas aerodynamics to construct a high fidelity aerodynamic model for spacecraft operating in the rarefied gas (mainly atomic oxygen) environment in very low Earth orbits (below 450 km) and following by a brief system level analysis of the benefits and challenges for the spacecraft flying lower to Earth. A real spacecraft is also developed to validate of the application of the aerodynamic forces for attitude control. The aspect of the design included in this dissertation focuses mainly on the attitude determination and control system development of satellite. The CubeSat has a generic design with deployable solar panels that can be rotated to control the aerodynamic torques. Based on the common attitude control requirements of spacecraft operating in very low Earth orbits, and the hardware capability of the satellite three novel orbital aerodynamic attitude control strategies are proposed: Energy Optimized B-dot Detumbling into an Aerostable State; Active Orbital Aerodynamic Coarse Pitch/Yaw Control; a 3-axis Orbital Aerodynamic Torques Adaptive Sliding Mode Control. The control performance for each control algorithm is validated numerically in high-fidelity attitude propagators. Knowledge of the thermospheric winds is important as they influence the control performance and the dynamic response of the spacecraft, aerostable designs steering into the thermosphere wind vector. Two novel computational methods to measure the thermospheric wind from the dynamic response of the spacecraft due to aerodynamic forces are proposed. The in-situ measured wind vector benefits the attitude observation in the feedback control systems, which helps to improve the adapting performance and to increase the control accuracy. The proposed novel aerodynamic attitude control algorithms can be adapted for similar spacecraft operating in the very low Earth orbits with modifications to the deployable solar panels or adding movable aerodynamic control surfaces. In addition, this proposed orbital aerodynamic attitude control system works not only in the very low Earth orbits but can also be potentially implemented for spacecraft operating in the rarefied gas region of the atmospheres of other planets.

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date31 Dec 2018