Nanoscale rearrangements in cortical actin filaments at lytic immunological synapses.

UoM administered thesis: Phd

  • Authors:
  • Mezida Bedru Saeed

Abstract

Lytic effector function of Natural Killer (NK) cells and CD8+ T cells occurs through discrete and regulated cell biological steps triggered by recognition of diseased cells. Recent studies of the NK cell synapse support the idea that dynamic nanoscale rearrangements in cortical filamentous (F)-actin are a critical cell biological checkpoint for lytic granule access to NK cell membrane. Loss of function mutations in the LYST gene, a well-characterised cause of Chediak- Hegashi syndrome (CHS), result in the formation of giant lysosomal organelles including lytic granules. Here, we report a mismatch between the extent of cortical F-actin remodelling and enlarged lytic granules that limits the functionality of LYST- deficient NK cells in a human model of CHS. Using super-resolution stimulated emission depletion (STED) microscopy we found that LYST-deficient NK cells had nanoscale rearrangements in the organisation of cortical actin filaments that were indistinguishable from control cells- despite a 2.5-fold increase in the size of polarised granules. Importantly, treatment of LYST-deficient NK cells with actin depolymerising drugs increased the formation of small secretory domains at the synapse and restored their ability to lyse target cells. These data establish that sub-synaptic F-actin is the major factor limiting the release of enlarged lytic granules from CHS NK cells, and reveal a novel target for therapeutic interventions. While the importance of cortical actin filaments in NK cell cytotoxicity have been established, its persistence at the early stages of T cell synapse formation is disputed. We studied the organisation of cortical actin filaments in synapses formed by primary human T cells using STED microscopy and detected intact cortical actin filaments in key T cell effector subsets including memory CD8+ T cells as early as 5-minutes post-activation. Quantitative analysis revealed that activation specific rearrangements in cortical actin filaments at both CD4+ and CD8+ T cell synapses serve to increase the space between filaments. Additionally, comparison of cytolytic T cells with freshly isolated and IL-2 activated primary NK cells revealed that rapid maturation of the cortical actin meshwork is a specific feature of CD8+ T cell lytic synapses. Using chemical inhibition of actin nucleators, we show that increased cortical relaxation is mediated primarily by the activity of actin related proteins (Arp) -2/3. Taken together, these data establish the critical requirement for dynamic rearrangements in cortical actin filaments at lytic synapses but underscore cell-specific differences in its regulation.

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date1 Aug 2018