In0.53Ga0.47As-In0.52Al0.48As Multiple Quantum Well THz photoconductive switches and In0.53Ga0.47As-AlAs Asymmetric Spacer Layer Tunnel (ASPAT) diodes for THz electronics

UoM administered thesis: Phd

  • Authors:
  • Yuekun Wang

Abstract

This thesis is concerned with terahertz (THz) technology from both optical and electronic approaches. On the optical front, the investigation of optimised photoconductive switches included the characterisation, fabrication and testing of devices which can generate and detect THz radiation over the frequency range from DC to ~ 2.5 THz. These devices incorporated semiconductor photoconductors grown under low temperature (LT) Molecular Beam Epitaxy (MBE) conditions and using distributed Bragg reflectors (DBRs). The material properties were studied via numerous characterisation techniques which included Hall Effect and mid infrared reflections. Antenna structures were fabricated on the surface of the active layers and pulsed/continuous wave (CW) signal absorbed by these structures (under bias) generates photocurrent. With the help of the DBRs at certain wavelengths (800 nm and 1550 nm), the absorption coefficient at the corresponding illumination wavelength increased thus leading to significant increase of the THz output power while the materials kept the desirable photoconductive material properties such as high dark resistivity and high electron mobility. The inclusion of DBRs resulted in more than doubling of the THz peak signals across the entire operating frequency range and significant improvements in the relative THz power. For the THz electronic approach, a new type of InP-based Asymmetric Spacer Tunnel Diode (ASPAT), which can be used for high frequency detector, was studied. The asymmetric DC characteristics for this novel tunnel diode showed direct compatibility with high frequency zero-bias detector applications. The devices also showed an extreme thermal stability (less than 7.8% current change from 77 K to 400 K) as the main carrier transport mechanism of the ASPAT was tunnelling. Physical models for this ASPAT diode were developed for both DC (direct current) and AC (alternating current) simulations using the TCAD software tool SILVACO. The simulated DC results showed almost perfect matches with measurements across the entire temperature range from 77 K to 400 K. From RF (radio frequency) measurements, the intrinsic diode parameters were extracted and compared with measured data. The simulated zero biased detector circuits operating at 100 GHz and 240 GHz using the new InGaAs-AlAs ASPAT diode (4*4 micrometer square) showed comparable voltage sensitivities to state of the art Schottky barrier diodes (SBDs) detectors but with the added advantage of excellent thermal stability.

Details

Original languageEnglish
Awarding Institution
Supervisors/Advisors
Award date31 Dec 2017