Prof Nigel ScruttonScD, FRSC, FRSB

Professor of Enzymology and Biophysical Chemistry

Full contact details
View graph of relations

Chemistry in the Life Sciences: A particular passion is 'putting the chemistry back into biochemistry' and moving away from  'blob-ology', i.e. the more descriptive view of biology. Life isn't about a series of interconnecting squares, triangles and circles in cellular communication networks (as is often depicted in text books and research papers) - its about chemistry. A complete understanding at the molecular level cannot happen without thorough grounding in chemical principles and knowledge of molecular structure, and students need to be comfortable in this space. Mechanistic and physical principles drive biological reactions, cell communication and replication and we cannot hope to understand biology at the systems or molecular levels without an understanding of the underlying key chemical and physical principles. Students must therefore not lose sight of the importance of chemical thinking to gain full appreciation of biological concepts.

Undergraduate: Mechanistic and molecular enzymology; enzyme kinetics and theory; fast reaction methods and spectroscopic studies of proteins; biophysical approaches to studies of protein systems; physical chemistry for biologists. 

Postgraduate: Experimental and theoretical approaches to studies of enzyme systems; structural and mechanistic enzymology; biocatalysis; physical principles underlying enzyme action; time resolved interrogation of enzyme mechanisms using multiple spectroscopies including ultrafast, laser photolysis, rapid mixing and equilibrium perturbation methods. Integration of structural and temporal data to elucidate and re-define enzyme function. Enzyme design/redesign, evolution and synthetic biology applications of enzymes (fuels; industrial chemicals; integrating chemo-biocatalysis).

Outreach: Outreach lectures - 'World in Crisis' on catalysis and exploitation of enzymes in the modern world; 'Fuels of the Future' exploring the impact of next generation biofuels on energy provision; 'Quantum Biology' exploring quantum effects in biological bevahiour. The above lectures have been delivered at both national and local venues e.g. Royal Institution, London; Greater Manchester SciBars etc.