Dr Matthew Sperrin PhD
Senior Lecturer

Research interests
Dr Sperrin researches new statistical methodology to make inference with observational health data, collaborating closely with clinicians, epidemiologists, health informaticians, software engineers and statisticians. His research can be categorised in two main areas:
1. Understanding the observation process. When data are observational it is crucial to understand why data are present (and why not present). For example, a blood pressure measurement in a medical record implies both that the patient has made contact with a healthcare professional, and the professional has deemed it appropriate to measure blood pressure. In other words, the presence of the measurement (or the absence) can be just as important as the measurement itself. This is often ignored in statistical analysis, which can lead to biased results.
2. Making predictions and decisions. Given what we know about a patient now, what do we think will happen to them in the future, and (therefore) what should happen next? For example, this involves developing prediction models for disease incidence and mortality, and complex simulation models to understand how disease may progress under different scenarios, both at an individual and population level.
If you are interested in the above areas, we are always looking for new people to join our group. Postdoctoral positions are often available, as are opportunities to undertake PhDs. Please get in touch with Dr Sperrin to find out more.
Methodological knowledge
Statistics, Epidemiology, Data Science
Projects
Research and projects
Mapping Opportunities for Earlier Detection of Bipolar Disorder - Linking Big Data to Improve Partient Outcomes.
Yung, A., Ashcroft, D., Francis, A., Sperrin, M. & Webb, R.
3/04/17 → 2/11/18
Project: Research
Harnessing Opportunities for Quality Improvement from Primary Care Electronic Health Records.
Brown, B., Blakeman, T., Buchan, I., Campbell, S. & Sperrin, M.
1/09/14 → 31/08/17
Project: Research