Using the ‘pay-off time’ in decision-analytic models: a case study for using statins in primary prevention

Research output: Contribution to journalArticle

Abstract

Background. The payoff time represents an estimate of when the benefits of an intervention outweigh the costs. It is particularly useful for benefit-harm decision making for interventions that have deferred benefits but upfront harms. The aim of this study was to expand the application of the payoff time and provide an example of its use within a decision-analytic model. Methods. Three clinically relevant patient vignettes based on varying levels of estimated 10-year cardiovascular risk (10%, 15%, 20%) were developed. An existing state-transition Markov model taking a health service perspective and a life-time horizon was adapted to include 3 levels of direct treatment disutility (DTD) associated with ongoing statin use: 0.005, 0.01, and 0.015. For each vignette and DTD we calculated a range of outputs including the payoff time inclusive and exclusive of healthcare costs. Results. For a 10% 10-year cardiovascular risk (vignette 1) with low-levels of DTD (0.005), the payoff time was 8.5 years when costs were excluded and 16 years when costs were included. As the baseline risk of cardiovascular increased, the payoff time shortened. For a 15% cardiovascular risk (vignette 2) and for a low-level of DTD, the payoff time was 5.5 years and 9.5 years, respectively. For a 20% cardiovascular risk (vignette 3), the payoff time was 4.2 and 7.2 years, respectively. For higher levels of DTDs for each vignette, the payoff time lengthened, and in some instances the intervention never paid off, leading to an expected net harm for patients. Conclusions. This study has shown how the payoff time can be readily applied to an existing decision-analytic model and be used to complement existing measures to guide healthcare decision making.

Bibliographical metadata

Original languageEnglish
JournalMedical Decision Making
Early online date25 Apr 2017
DOIs
Publication statusPublished - 2017

Related information

Researchers

View all