Thermal acclimation and seasonal acclimatization: a comparative study of cardiac response to prolonged temperature change in shorthorn sculpin

Research output: Contribution to journalArticle

Abstract

Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C (‘summer-acclimated’); (2) summer-caught fish kept at 3°C (‘cold acclimated’); and (3) fish caught in March (‘winter-acclimatized’). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (IKr and IK1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (ICa) was larger following winter acclimatization, but again, there was no effect of cold acclimation on ICa. Interestingly, the other depolarizing current, INa, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects.

Bibliographical metadata

Original languageEnglish
Pages (from-to)jeb202242
JournalThe Journal of Experimental Biology
Volume222
Issue number16
Early online date17 Jul 2019
DOIs
Publication statusPublished - 20 Aug 2019