The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing.

Research output: Contribution to journalArticle


Towards the end of 2007, the results were published from a case–control study (the “KiKK Study”) of cancer in young children, diagnosed <5 years of age during 1980–2003 while resident near nuclear power stations in western Germany. The study found a tendency for cases of leukaemia to live closer to the nearest nuclear power station than their matched controls, producing an odds ratio that was raised to a statistically significant extent for residence within 5 km of a nuclear power station. The findings of the study received much publicity, but a detailed radiological risk assessment demonstrated that the radiation doses received by young children from discharges of radioactive material from the nuclear reactors were much lower than those received from natural background radiation and far too small to be responsible for the statistical association reported in the KiKK Study. This has led to speculation that conventional radiological risk assessments have grossly underestimated the risk of leukaemia in young children posed by exposure to man-made radionuclides, and particular attention has been drawn to the possible role of tritium and carbon-14 discharges in this supposedly severe underestimation of risk. Both 3H and 14C are generated naturally in the upper atmosphere, and substantial increases in these radionuclides in the environment occurred as a result of their production by atmospheric testing of nuclear weapons during the late 1950s and early 1960s. If the leukaemogenic effect of these radionuclides has been seriously underestimated to the degree necessary to explain the KiKK Study findings, then a pronounced increase in the worldwide incidence of leukaemia among young children should have followed the notably elevated exposure to 3H and 14C from nuclear weapons testing fallout. To investigate this hypothesis, the time series of incidence rates of leukaemia among young children <5 years of age at diagnosis has been examined from ten cancer registries from three continents and both hemispheres, which include registration data from the early 1960s or before. No evidence of a markedly increased risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are related to level of exposure to fallout, is apparent from these registration rates, providing strong grounds for discounting the idea that the risk of leukaemia in young children from 3H or 14C (or any other radionuclide present in both nuclear weapons testing fallout and discharges from nuclear installations) has been grossly underestimated and that such exposure can account for the findings of the KiKK Study.

Bibliographical metadata

Original languageEnglish
Pages (from-to)365-379
JournalRadiation and Environmental Biophysics
Issue number2
Publication statusPublished - May 2014