Systematic review of the evidence sources applied to cost-effectiveness analyses for older women with primary breast cancer

Research output: Contribution to journalReview articlepeer-review

Abstract

Objective
To appraise the sources of evidence and methods to estimate input parameter values in decision-analytic model-based cost-effectiveness analyses of treatments for primary breast cancer (PBC) in older patients (≥ 70 years old).

Methods
Two electronic databases (Ovid Medline, Ovid EMBASE) were searched (inception until 5 September-2021) to identify model-based full economic evaluations of treatments for older women with PBC as part of their base-case target population or age-subgroup analysis. Data sources and methods to estimate four types of input parameters including health-related quality of life (HRQoL); natural history; treatment effect; resource use were extracted and appraised. Quality assessment was completed by reference to the Consolidated Health Economic Evaluation Reporting Standards.

Results
Seven model-based economic evaluations were included (older patients as part of their base-case (n = 3) or subgroup (n = 4) analysis). Data from younger patients (< 70 years) were used frequently to estimate input parameters. Different methods were adopted to adjust these estimates for an older population (HRQoL: disutility multipliers, additive utility decrements; Natural history: calibration of absolute values, one-way sensitivity analyses; Treatment effect: observational data analysis, age-specific behavioural parameters, plausible scenario analyses; Resource use: matched control observational data analysis, age-dependent follow-up costs).

Conclusion
Improving estimated input parameters for older PBC patients will improve estimates of cost-effectiveness, decision uncertainty, and the value of further research. The methods reported in this review can inform future cost-effectiveness analyses to overcome data challenges for this population. A better understanding of the value of treatments for these patients will improve population health outcomes, clinical decision-making, and resource allocation decisions.

Bibliographical metadata

Original languageEnglish
Article number9
JournalCost Effectiveness and Resource Allocation
Volume20
DOIs
Publication statusPublished - 1 Mar 2022