Retrogressive failure of a static granular layer on an inclined plane

Research output: Contribution to journalArticlepeer-review

  • External authors:
  • Sylvain Viroulet
  • Francisco Melo Da Rocha


When a layer of static grains on a sufficiently steep slope is disturbed, an upslope-propagating erosion wave, or retrogressive failure, may form that separates the initially static material from a downslope region of flowing grains. This paper shows that a relatively simple depth-averaged avalanche model with frictional hysteresis is sufficient to capture a planar retrogressive failure that is independent of the cross slope coordinate. The hysteresis is modelled with a non-monotonic effective basal friction law that has static, intermediate (velocity decreasing) and dynamic (velocity increasing) regimes. Both experiments and time-dependent numerical simulations show that steadily travelling retrogressive waves rapidly form in this system and a travelling wave ansatz is therefore used to derive a one-dimensional depth-averaged exact solution. The speed of the wave is determined by a critical point in the ordinary differential equation for the thickness. The critical point lies in the intermediate frictional regime, at the point where the friction exactly balances the downslope component of gravity. The retrogressive wave is therefore a sensitive test of the functional form of the friction law in this regime, where steady uniform flows are unstable and so cannot be used to determine the friction law directly. Upper and lower bounds for the existence of retrogressive waves in terms of the initial layer depth and the slope inclination are found and shown to be in good agreement with the experimentally determined phase diagram. For the friction law proposed by Edwards et al. (2017, 2019) the magnitude of the wave speed is slightly under-predicted, but, for a given initial layer thickness, the exact solution accurately predicts an increase in the wave speed with higher inclinations. The model also captures the finite wave speed at the onset of retrogressive failure observed in experiments.

Bibliographical metadata

Original languageEnglish
Pages (from-to)313-340
JournalJournal of Fluid Mechanics
Early online date26 Apr 2019
Publication statusPublished - 25 Jun 2019

Related information


View all