Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulationCitation formats

  • External authors:
  • Amitpal Singh Tagore
  • David Barnes
  • Matthieu Schaller
  • Joop Schaye
  • Tom Theuns

Standard

Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation. / Tagore, Amitpal Singh; Barnes, David; Jackson, Neal; Kay, Scott; Schaller, Matthieu; Schaye, Joop ; Theuns, Tom.

In: Monthly Notices of the Royal Astronomical Society, 05.12.2017.

Research output: Contribution to journalArticle

Harvard

Tagore, AS, Barnes, D, Jackson, N, Kay, S, Schaller, M, Schaye, J & Theuns, T 2017, 'Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation' Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stx2965

APA

Tagore, A. S., Barnes, D., Jackson, N., Kay, S., Schaller, M., Schaye, J., & Theuns, T. (2017). Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1093/mnras/stx2965

Vancouver

Tagore AS, Barnes D, Jackson N, Kay S, Schaller M, Schaye J et al. Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation. Monthly Notices of the Royal Astronomical Society. 2017 Dec 5. https://doi.org/10.1093/mnras/stx2965

Author

Tagore, Amitpal Singh ; Barnes, David ; Jackson, Neal ; Kay, Scott ; Schaller, Matthieu ; Schaye, Joop ; Theuns, Tom. / Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation. In: Monthly Notices of the Royal Astronomical Society. 2017.

Bibtex

@article{e3ff90fe7a6f4e6e99a410defb450b09,
title = "Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation",
abstract = "Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyze strong lenses from the largest eagle hydro- dynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5{\%} with an intrinsic scatter of 10{\%}, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source–lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6{\%} and 10{\%}, respectively, while quad lenses show bias and intrinsic scatter of 0.5{\%} and 10{\%}, respectively. For lenses with a reduced ¬2 > 1, a power-law dependence of the ¬2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.",
keywords = "gravitational lensing: strong, methods: numerical , cosmology: cosmological parameters, galaxies: kinematics and dynamics",
author = "Tagore, {Amitpal Singh} and David Barnes and Neal Jackson and Scott Kay and Matthieu Schaller and Joop Schaye and Tom Theuns",
year = "2017",
month = "12",
day = "5",
doi = "10.1093/mnras/stx2965",
language = "English",
journal = "Royal Astronomical Society. Monthly Notices",
issn = "1365-2966",
publisher = "Oxford University Press",

}

RIS

TY - JOUR

T1 - Reducing biases on H0 measurements using strong lensing and galaxy dynamics: results from the eagle simulation

AU - Tagore, Amitpal Singh

AU - Barnes, David

AU - Jackson, Neal

AU - Kay, Scott

AU - Schaller, Matthieu

AU - Schaye, Joop

AU - Theuns, Tom

PY - 2017/12/5

Y1 - 2017/12/5

N2 - Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyze strong lenses from the largest eagle hydro- dynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5% with an intrinsic scatter of 10%, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source–lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6% and 10%, respectively, while quad lenses show bias and intrinsic scatter of 0.5% and 10%, respectively. For lenses with a reduced ¬2 > 1, a power-law dependence of the ¬2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.

AB - Cosmological parameter constraints from observations of time-delay lenses are becoming increasingly precise. However, there may be significant bias and scatter in these measurements due to, among other things, the so-called mass-sheet degeneracy. To estimate these uncertainties, we analyze strong lenses from the largest eagle hydro- dynamical simulation. We apply a mass-sheet transformation to the radial density profiles of lenses, and by selecting lenses near isothermality, we find that the bias on H0 can be reduced to 5% with an intrinsic scatter of 10%, confirming previous results performed on a different simulation data set. We further investigate whether combining lensing observables with kinematic constraints helps to minimize this bias. We do not detect any significant dependence of the bias on lens model parameters or observational properties of the galaxy, but depending on the source–lens configuration, a bias may still exist. Cross lenses provide an accurate estimate of the Hubble constant, while fold (double) lenses tend to be biased low (high). With kinematic constraints, double lenses show bias and intrinsic scatter of 6% and 10%, respectively, while quad lenses show bias and intrinsic scatter of 0.5% and 10%, respectively. For lenses with a reduced ¬2 > 1, a power-law dependence of the ¬2 on the lens environment (number of nearby galaxies) is seen. Lastly, we model, in greater detail, the cases of two double lenses that are significantly biased. We are able to remove the bias, suggesting that the remaining biases could also be reduced by carefully taking into account additional sources of systematic uncertainty.

KW - gravitational lensing: strong

KW - methods: numerical

KW - cosmology: cosmological parameters

KW - galaxies: kinematics and dynamics

U2 - 10.1093/mnras/stx2965

DO - 10.1093/mnras/stx2965

M3 - Article

JO - Royal Astronomical Society. Monthly Notices

JF - Royal Astronomical Society. Monthly Notices

SN - 1365-2966

ER -