Organic Semiconductors Processed from Synthesis-to-Device in Water

Research output: Contribution to journalArticlepeer-review

  • External authors:
  • Raymundo Marcial Hernández
  • Adibah Zamhuri
  • Daniel Tate
  • Raja Khan
  • Suphaluk Aphichatpanichakul
  • Sebastian Broll

Abstract

Organic semiconductors (OSCs) promise to deliver next-generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle-to-grave process is reported to achieve high performance p- and n-type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous-processes, fewer steps, lower reaction temperatures, and a significant reduction in VOCs (>99%) and avoiding all halogenated solvents. The process involves an aqueous mini-emulsion polymerization that generates a surfactant-stabilized aqueous dispersion of OSC nanoparticles at sufficient concentrations to permit direct aqueous processing into thin-films for use in organic field-effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents. Ultimately, the holistic approach reported addresses the environmental issues and enables a viable guideline for the delivery of future OSC devices using only aqueous media from synthesis, purification and thin-film processing.

Bibliographical metadata

Original languageEnglish
JournalAdvanced Science
Publication statusAccepted/In press - 22 Jul 2020

Related information

Researchers

View all