Metabolic flux from the chloroplast provides signals controlling photosynthetic acclimation to cold in Arabidopsis thaliana

Research output: Contribution to journalArticlepeer-review

  • Authors:
  • Helena A. Herrmann
  • Beth C. Dyson
  • Matthew A. E. Miller
  • Jean‐marc Schwartz
  • Giles N. Johnson

Abstract

Photosynthesis is especially sensitive to environmental conditions, and the composition of the photosynthetic apparatus can be modulated in response to environmental change, a process termed photosynthetic acclimation. Previously, we identified a role for a cytosolic fumarase, FUM2 in acclimation to low temperature in Arabidopsis thaliana. Mutant lines lacking FUM2 were unable to acclimate their photosynthetic apparatus to cold. Here, using gas exchange measurements and metabolite assays of acclimating and non‐acclimating plants, we show that acclimation to low temperature results in a change in the distribution of photosynthetically fixed carbon to different storage pools during the day. Proteomic analysis of wild‐type Col‐0 Arabidopsis and of a fum2 mutant, which was unable to acclimate to cold, indicates that extensive changes occurring in response to cold are affected in the mutant. Metabolic and proteomic data were used to parameterize metabolic models. Using an approach called flux sampling, we show how the relative export of triose phosphate and 3‐phosphoglycerate provides a signal of the chloroplast redox state that could underlie photosynthetic acclimation to cold.

Bibliographical metadata

Original languageEnglish
JournalPlant, Cell & Environment
Early online date27 Sep 2020
DOIs
Publication statusE-pub ahead of print - 27 Sep 2020