Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugsCitation formats

Standard

Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. / Assmus, Frauke; Houston, James; Galetin, Aleksandra.

In: European Journal of Pharmaceutical Sciences, 2017.

Research output: Contribution to journalArticle

Harvard

APA

Vancouver

Author

Bibtex

@article{035c3b5b90b74dceaada83c5e126d175,
title = "Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs",
abstract = "The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237–48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pKa ≥ 7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56{\%} drugs within 2-fold or 88{\%} within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68{\%} and 54{\%} of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (> 1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among cell types. Despite this extensive lysosomal sequestration in the individual cells types, the maximal change in the overall predicted tissue Kpu was < 3-fold for lysosome-rich tissues investigated here. Accounting for the variability in cellular physiological model input parameters, in particular lysosomal pH and fraction of the cellular volume occupied by the lysosomes, only partially explained discrepancies between observed and predicted Kpu data in the lung. Improved understanding of the system properties, e.g., cell/organelle composition is required to support further development of mechanistic equations for the prediction of drug tissue distribution. Application of this revised mechanistic model is recommended for prediction of Kpu in lysosome-rich tissue to facilitate the advancement of physiologically-based prediction of volume of distribution and drug exposure in the tissues.",
author = "Frauke Assmus and James Houston and Aleksandra Galetin",
year = "2017",
doi = "10.1016/j.ejps.2017.08.014",
language = "English",
journal = "European Journal of Pharmaceutical Sciences",
issn = "0928-0987",
publisher = "Elsevier BV",

}

RIS

TY - JOUR

T1 - Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs

AU - Assmus, Frauke

AU - Houston, James

AU - Galetin, Aleksandra

PY - 2017

Y1 - 2017

N2 - The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237–48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pKa ≥ 7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (> 1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among cell types. Despite this extensive lysosomal sequestration in the individual cells types, the maximal change in the overall predicted tissue Kpu was < 3-fold for lysosome-rich tissues investigated here. Accounting for the variability in cellular physiological model input parameters, in particular lysosomal pH and fraction of the cellular volume occupied by the lysosomes, only partially explained discrepancies between observed and predicted Kpu data in the lung. Improved understanding of the system properties, e.g., cell/organelle composition is required to support further development of mechanistic equations for the prediction of drug tissue distribution. Application of this revised mechanistic model is recommended for prediction of Kpu in lysosome-rich tissue to facilitate the advancement of physiologically-based prediction of volume of distribution and drug exposure in the tissues.

AB - The prediction of tissue-to-plasma water partition coefficients (Kpu) from in vitro and in silico data using the tissue-composition based model (Rodgers & Rowland, J Pharm Sci. 2005, 94(6):1237–48.) is well established. However, distribution of basic drugs, in particular into lysosome-rich lung tissue, tends to be under-predicted by this approach. The aim of this study was to develop an extended mechanistic model for the prediction of Kpu which accounts for lysosomal sequestration and the contribution of different cell types in the tissue of interest. The extended model is based on compound-specific physicochemical properties and tissue composition data to describe drug ionization, distribution into tissue water and drug binding to neutral lipids, neutral phospholipids and acidic phospholipids in tissues, including lysosomes. Physiological data on the types of cells contributing to lung, kidney and liver, their lysosomal content and lysosomal pH were collated from the literature. The predictive power of the extended mechanistic model was evaluated using a dataset of 28 basic drugs (pKa ≥ 7.8, 17 β-blockers, 11 structurally diverse drugs) for which experimentally determined Kpu data in rat tissue have been reported. Accounting for the lysosomal sequestration in the extended mechanistic model improved the accuracy of Kpu predictions in lung compared to the original Rodgers model (56% drugs within 2-fold or 88% within 3-fold of observed values). Reduction in the extent of Kpu under-prediction was also evident in liver and kidney. However, consideration of lysosomal sequestration increased the occurrence of over-predictions, yielding overall comparable model performances for kidney and liver, with 68% and 54% of Kpu values within 2-fold error, respectively. High lysosomal concentration ratios relative to cytosol (> 1000-fold) were predicted for the drugs investigated; the extent differed depending on the lysosomal pH and concentration of acidic phospholipids among cell types. Despite this extensive lysosomal sequestration in the individual cells types, the maximal change in the overall predicted tissue Kpu was < 3-fold for lysosome-rich tissues investigated here. Accounting for the variability in cellular physiological model input parameters, in particular lysosomal pH and fraction of the cellular volume occupied by the lysosomes, only partially explained discrepancies between observed and predicted Kpu data in the lung. Improved understanding of the system properties, e.g., cell/organelle composition is required to support further development of mechanistic equations for the prediction of drug tissue distribution. Application of this revised mechanistic model is recommended for prediction of Kpu in lysosome-rich tissue to facilitate the advancement of physiologically-based prediction of volume of distribution and drug exposure in the tissues.

U2 - 10.1016/j.ejps.2017.08.014

DO - 10.1016/j.ejps.2017.08.014

M3 - Article

JO - European Journal of Pharmaceutical Sciences

JF - European Journal of Pharmaceutical Sciences

SN - 0928-0987

ER -