Gene Expression and Hormone Secretion Profile of Urotensin I Associated with Osmotic Challenge in Caudal Neurosecretory System of the Euryhaline Flounder, Platichthys flesus

Research output: Contribution to journalArticle

  • External authors:
  • Weiqun Lu
  • Gege Zhu
  • Aqin Chen
  • Xiaoxue Li
  • Richard Balment

Abstract

The caudal neurosecretory system (CNSS) is a part of stress response system, a neuroendocrine structure unique to fish. To gain a better understanding of the physiological roles of CNSS in fluid homeostasis, we characterized the tissue distribution of Urotensin I (UI) expression in European flounder (Platichthys flesus), analyzed the effect chronic exposure to seawater (SW) or freshwater (FW), transfer from SW to FW, and reverse transfer on mRNA levels of UI, L-type Ca2+ channels and Ca-activated K+ channels transcripts in CNSS. The tissue distribution demonstrated that the CNSS is dominant sites of UI expression, and UI mRNA level in fore brain appeared greater than other non-CNSS tissues. There were no consistent differences in CNSS UI expression or urophysis UI content between SW- and FW- adapted fish in July and September. After transfer from SW to FW, at 8 h CNSS UI expression was significantly increased, but urophysis UI content was no significantly changes. At 24 h transfer from SW to FW, expression of CNSS UI was no apparent change and urophsyis UI content was reduced. At 8 h and 24 h after transfer from FW to SW UI expression and urophysis UI content was no significantly effect. The expression of bursting dependent L-type Ca2+ channels and Ca-activated K+ channels in SW-adapted fish significantly decreased compared to those in FW-adapted. However, there were no differences in transfer from SW to FW or from FW to SW at 8 h and 24 h. Thus, these results suggest CNSS UI acts as a modulator in response to osmotic stress and plays important roles in the body fluid homeostasis.

Bibliographical metadata

Original languageEnglish
JournalGeneral and comparative endocrinology
Early online date8 Jan 2019
DOIs
Publication statusPublished - 2019