Frustrated spin-½ Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1-J2-J1 modelCitation formats

  • Authors:
  • R.F. Bishop
  • Peggy H.Y. Li
  • Oliver Götze
  • Johannes Richter

Standard

Frustrated spin-½ Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1-J2-J1 model. / Bishop, R.F.; Li, Peggy H.Y.; Götze, Oliver; Richter, Johannes.

In: Physical Review B, Vol. 100, 024401 (14pp), 2019.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{969f6e6d3b0b4795a42e03e67f58e8f1,
title = "Frustrated spin-½ Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1-J2-J1⊥ model",
abstract = "The zero-temperature phase diagram of the spin-½ J1-J2-J1⊥ model on an AA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders.  Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1 > 0 and J2 ≡ κJ1 > 0, respectively, are included in each layer.  The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1⊥ ≡ δJ1.  The magnetic order parameter M  (viz., the sublattice magnetization)is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the N{\'e}el or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ < 0) or antiparallel (when δ > 0) to one another.  Calculations are performed at nth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked-cluster theorem and the Hellmann-Feynman theorem, with n ≤ 10.  The sole approximation made is to extrapolate such sequences of nth-order results for M to the exact limit n → ∞.   By thus locating the points where M  vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ-δ half-plane with κ > 0. In particular, we provide the accurate estimate (κ ≈ 0.547, δ ≈ −0.45) for the position of the quantum triple point (QTP) in the region δ < 0.   We also show that there is no counterpart of such a QTP in the region δ > 0, where the two quasiclassical phase boundaries show instead an “avoided crossing” behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected.",
author = "R.F. Bishop and Li, {Peggy H.Y.} and Oliver G{\"o}tze and Johannes Richter",
year = "2019",
doi = "10.1103/PhysRevB.100.024401",
language = "English",
volume = "100",
journal = "Physical Review B",
issn = "2469-9969",
publisher = "American Physical Society",

}

RIS

TY - JOUR

T1 - Frustrated spin-½ Heisenberg magnet on a square-lattice bilayer: High-order study of the quantum critical behavior of the J1-J2-J1⊥ model

AU - Bishop, R.F.

AU - Li, Peggy H.Y.

AU - Götze, Oliver

AU - Richter, Johannes

PY - 2019

Y1 - 2019

N2 - The zero-temperature phase diagram of the spin-½ J1-J2-J1⊥ model on an AA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders.  Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1 > 0 and J2 ≡ κJ1 > 0, respectively, are included in each layer.  The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1⊥ ≡ δJ1.  The magnetic order parameter M  (viz., the sublattice magnetization)is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the Néel or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ < 0) or antiparallel (when δ > 0) to one another.  Calculations are performed at nth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked-cluster theorem and the Hellmann-Feynman theorem, with n ≤ 10.  The sole approximation made is to extrapolate such sequences of nth-order results for M to the exact limit n → ∞.   By thus locating the points where M  vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ-δ half-plane with κ > 0. In particular, we provide the accurate estimate (κ ≈ 0.547, δ ≈ −0.45) for the position of the quantum triple point (QTP) in the region δ < 0.   We also show that there is no counterpart of such a QTP in the region δ > 0, where the two quasiclassical phase boundaries show instead an “avoided crossing” behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected.

AB - The zero-temperature phase diagram of the spin-½ J1-J2-J1⊥ model on an AA-stacked square-lattice bilayer is studied using the coupled cluster method implemented to very high orders.  Both nearest-neighbor (NN) and frustrating next-nearest-neighbor Heisenberg exchange interactions, of strengths J1 > 0 and J2 ≡ κJ1 > 0, respectively, are included in each layer.  The two layers are coupled via a NN interlayer Heisenberg exchange interaction with a strength J1⊥ ≡ δJ1.  The magnetic order parameter M  (viz., the sublattice magnetization)is calculated directly in the thermodynamic (infinite-lattice) limit for the two cases when both layers have antiferromagnetic ordering of either the Néel or the striped kind, and with the layers coupled so that NN spins between them are either parallel (when δ < 0) or antiparallel (when δ > 0) to one another.  Calculations are performed at nth order in a well-defined sequence of approximations, which exactly preserve both the Goldstone linked-cluster theorem and the Hellmann-Feynman theorem, with n ≤ 10.  The sole approximation made is to extrapolate such sequences of nth-order results for M to the exact limit n → ∞.   By thus locating the points where M  vanishes, we calculate the full phase boundaries of the two collinear AFM phases in the κ-δ half-plane with κ > 0. In particular, we provide the accurate estimate (κ ≈ 0.547, δ ≈ −0.45) for the position of the quantum triple point (QTP) in the region δ < 0.   We also show that there is no counterpart of such a QTP in the region δ > 0, where the two quasiclassical phase boundaries show instead an “avoided crossing” behavior, such that the entire region that contains the nonclassical paramagnetic phases is singly connected.

U2 - 10.1103/PhysRevB.100.024401

DO - 10.1103/PhysRevB.100.024401

M3 - Article

VL - 100

JO - Physical Review B

JF - Physical Review B

SN - 2469-9969

M1 - 024401 (14pp)

ER -