Epidermal Growth Factor and Sphingosine-1-Phosphate stimulate Na+/H+ exchanger (NHE) in human placental syncytiotrophoblast.

Research output: Contribution to journalArticle

Abstract

The Na+/H+ exchanger (NHE) has a key role in intracellular pH ([pH]i) regulation of the syncytiotrophoblast in the human placenta and may have a role in the life cycle of this cell. In other cells the NHE (actually a family of up to 9 isoforms) is regulated by a variety of factors, but its regulation in the syncytiotrophoblast has not been studied. Here we tested the hypotheses that epidermal growth factor (EGF) and sphingosine-1-phosphate (S1P), both of which affect trophoblast apoptosis and, in other cell types, NHE activity, stimulate syncytiotrophoblast NHE activity. Villous fragments from term human placentas were loaded with the pH-sensitive dye, BCECF. NHE activity was measured by following the recovery of syncytiotrophoblast [pH]i following an imposed acid load, in the presence and absence of EGF, S1P and specific inhibitors of NHE activity. Both EGF and S1P caused a dose-dependent upregulation of NHE activity in the syncytiotrophoblast. These effects were blocked by amiloride 500µM (a non-specific NHE blocker) and HOE694 100µM (NHE blocker with NHE1 and 2 isoform selectivity). Effects of EGF were also reduced by the NHE3 selective blocker S3226 (used at 1µM). These data provide the first evidence that both EGF and S1P stimulate NHE activity in the syncytiotrophoblast; they appear to do so predominantly by activating the NHE1 isoform.

Bibliographical metadata

Original languageEnglish
JournalAmerican Journal of Phsyiology
Publication statusPublished - 2007