Early detection of plant virus infection using multispectral imaging and spatial-spectral machine learning

Research output: Contribution to journalArticlepeer-review

  • External authors:
  • Yao Peng
  • Mary Dallas
  • Jose Ascencio-Ibanez
  • Steen Hoyer
  • James Legg
  • Linda Hanley-Bowdoin

Abstract

Cassava brown streak disease (CBSD) is an emerging viral disease that can greatly reduce cassava productivity, while causing only mild aerial symptoms that develop late in infection. Early detection of CBSD enables better crop management and intervention. Current techniques require laboratory equipment and are labour intensive and often inaccurate. We have developed a handheld active multispectral imaging (A-MSI) device combined with machine learning for early detection of CBSD in real-time. The principal benefits of A-MSI over passive MSI and conventional camera systems are improved spectral signal-to-noise ratio and temporal repeatability. Information fusion techniques further combine spectral and spatial information to reliably identify features that distinguish healthy cassava from plants with CBSD as early as 28 days post inoculation on a susceptible and a tolerant cultivar. Application of the device has the potential to increase farmers’ access to healthy planting materials and reduce losses due to CBSD in Africa. It can also be adapted for sensing other biotic and abiotic stresses in real-world situations where plants are exposed to multiple pest, pathogen and environmental stresses.

Bibliographical metadata

Original languageEnglish
JournalScientific Reports
DOIs
Publication statusPublished - 24 Feb 2022