Dissociating stimulus-driven semantic and phonological effect during reading and naming

Research output: Contribution to journalArticle

Abstract

The aim of the present study was to dissociate the neural correlates of semantic and phonological processes during word reading and picture naming. Previous studies have addressed this issue by contrasting tasks involving semantic and phonological decisions. However, these tasks engage verbal short-term memory and executive functions that are not required for reading and naming. Here, 20 subjects were instructed to overtly name written words and pictures of objects while their neuronal responses were measured using functional magnetic resonance imaging (fMRI). Each trial consisted of a pair of successive stimuli that were either semantically related (e.g., "ROBIN-nest"), phonologically related (e.g., "BELL-belt"), unrelated (e.g., "KITE-lobster"), or semantically and phonologically identical (e.g., "FRIDGE-fridge"). In addition, a pair of stimuli could be presented in either the same modality (word-word or picture-picture) or a different modality (word-picture or picture-word). We report that semantically related pairs modulate neuronal responses in a left-lateralized network, including the pars orbitalis of the inferior frontal gyrus, the middle temporal gyrus, the angular gyrus, and the superior frontal gyrus. We propose that these areas are involved in stimulus-driven semantic processes. In contrast, phonologically related pairs modulate neuronal responses in bilateral insula. This region is therefore implicated in the discrimination of similar, competing phonological and articulatory codes. The above effects were detected with both words and pictures and did not differ between the two modalities even with a less conservative statistical threshold. In conclusion, this study dissociates the effects of semantic and phonological relatedness between successive items during reading and naming aloud. © 2006 Wiley-Liss, Inc.

Bibliographical metadata

Original languageEnglish
Pages (from-to)205-217
Number of pages12
JournalHuman Brain Mapping
Volume28
Issue number3
DOIs
Publication statusPublished - Mar 2007