Dissipative Catalysis with a Molecular Machine

Research output: Contribution to journalArticle

  • External authors:
  • Chiara Biagini
  • Stephen D. P. Fielden
  • Fredrik Schaufelberger
  • Stefano Di Stefano
  • Dean Thomas


We report on catalysis by a fuel‐induced transient state of a synthetic molecular machine. A [2]rotaxane molecular shuttle containing secondary ammonium/amine and thiourea stations is converted between catalytically inactive and active states by pulses of a chemical fuel (trichloroacetic acid) that is, itself, decomposed by the machine and/or the presence of additional base. The ON‐state of the rotaxane catalyzes the reduction of a nitrostyrene by transfer hydrogenation. By varying the amount of fuel added, the lifetime of the rotaxane ON‐state can be regulated and temporal control of catalysis achieved. The system can be pulsed with chemical fuel several times in succession, each pulse activating catalysis for a time period determined by the amount of fuel added. Dissipative catalysis by synthetic molecular machines has implications for the future design of networks that feature communication and signaling between the components.

Bibliographical metadata

Original languageEnglish
JournalAngewandte Chemie International Edition
Early online date20 May 2019
Publication statusPublished - 2019