Deposition of artificial radionuclides in sediments of Loch Etive, ScotlandCitation formats

  • External authors:
  • Hamza Al-Qasmi
  • Gareth Law
  • L. Keith Fifield
  • John A Howe
  • Tim Brand
  • Gregory L. Cowie
  • Kathleen Law

Standard

Deposition of artificial radionuclides in sediments of Loch Etive, Scotland. / Al-Qasmi, Hamza; Law, Gareth; Fifield, L. Keith; Howe, John A; Brand, Tim; Cowie, Gregory L.; Law, Kathleen; Livens, Francis.

In: Journal of Environmental Radioactivity, 2018.

Research output: Contribution to journalArticlepeer-review

Harvard

Al-Qasmi, H, Law, G, Fifield, LK, Howe, JA, Brand, T, Cowie, GL, Law, K & Livens, F 2018, 'Deposition of artificial radionuclides in sediments of Loch Etive, Scotland', Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2018.02.001

APA

Al-Qasmi, H., Law, G., Fifield, L. K., Howe, J. A., Brand, T., Cowie, G. L., Law, K., & Livens, F. (2018). Deposition of artificial radionuclides in sediments of Loch Etive, Scotland. Journal of Environmental Radioactivity. https://doi.org/10.1016/j.jenvrad.2018.02.001

Vancouver

Al-Qasmi H, Law G, Fifield LK, Howe JA, Brand T, Cowie GL et al. Deposition of artificial radionuclides in sediments of Loch Etive, Scotland. Journal of Environmental Radioactivity. 2018. https://doi.org/10.1016/j.jenvrad.2018.02.001

Author

Al-Qasmi, Hamza ; Law, Gareth ; Fifield, L. Keith ; Howe, John A ; Brand, Tim ; Cowie, Gregory L. ; Law, Kathleen ; Livens, Francis. / Deposition of artificial radionuclides in sediments of Loch Etive, Scotland. In: Journal of Environmental Radioactivity. 2018.

Bibtex

@article{bf6e7b45af4448c7988c9d06c4ea1274,
title = "Deposition of artificial radionuclides in sediments of Loch Etive, Scotland",
abstract = "The nuclear fuel reprocessing plants on the Sellafield site (UK) have released low-level effluents into the Irish Sea under authorisation since 1952. This has led to the labelling of nearby offshore sediments with a range of artificial radionuclides. In turn, these sediments act as a long-term secondary source of both soluble and particle-associated radionuclides to coastal areas. These radionuclides are of interest both in assessing possible environmental impacts and as tracers for marine processes. Here we present results from a study of the geochemistry of natural (234, 238U) and artificial (137Cs, 241Am, 238Pu, 239+240Pu, and 236U) radionuclides and their accumulation in sediments from Loch Etive, Scotland. The data are interpreted in the context of the historical radioactive discharges to the Irish Sea and biogeochemical processes in marine sediments. Loch Etive is divided into two basins; a lower, seaward basin where the sedimentation rate (∼0.6 cm/yr) is about twice that of the more isolated upper basin (∼0.3 cm/yr). These accumulation rates are consistent with the broad distribution of 137Cs in the sediment profiles which can be related to the maximum Sellafield discharges of 137Cs in the mid-1970s and suggest that 137Cs was mainly transported in solution to Loch Etive during that period. Enrichments of Mn, Fe, and Mo in sediment and porewater from both Loch Etive basins result from contemporary biogeochemical redox processes. Enrichments of 238U and 234U in the lower basin may be a result of the cycling of natural U. By contrast, the Sellafield-derived artificial isotope 236U does not seem to be affected by the redox-driven reactions in the lower basin. The 238Pu/239,240Pu ratios suggest contributions from both historical Sellafield discharges and global fallout Pu. The uniform sediment distributions of Pu and Am, which do not reflect Sellafield historical discharges, suggest the existence of a homogenous secondary source. This could be the offshore {\textquoteleft}mud patch{\textquoteright} in the vicinity of Sellafield from which the supply of radionuclides reflects time-integrated Sellafield discharges. This source could also account for the continuing supply of Cs to Loch Etive, even after substantial reductions in discharge from the Sellafield site.",
keywords = "Americium, Uranium, Plutonium, Cesium, Sellafield",
author = "Hamza Al-Qasmi and Gareth Law and Fifield, {L. Keith} and Howe, {John A} and Tim Brand and Cowie, {Gregory L.} and Kathleen Law and Francis Livens",
year = "2018",
doi = "10.1016/j.jenvrad.2018.02.001",
language = "English",
journal = "Journal of Environmental Radioactivity",
issn = "0265-931X",
publisher = "Elsevier BV",

}

RIS

TY - JOUR

T1 - Deposition of artificial radionuclides in sediments of Loch Etive, Scotland

AU - Al-Qasmi, Hamza

AU - Law, Gareth

AU - Fifield, L. Keith

AU - Howe, John A

AU - Brand, Tim

AU - Cowie, Gregory L.

AU - Law, Kathleen

AU - Livens, Francis

PY - 2018

Y1 - 2018

N2 - The nuclear fuel reprocessing plants on the Sellafield site (UK) have released low-level effluents into the Irish Sea under authorisation since 1952. This has led to the labelling of nearby offshore sediments with a range of artificial radionuclides. In turn, these sediments act as a long-term secondary source of both soluble and particle-associated radionuclides to coastal areas. These radionuclides are of interest both in assessing possible environmental impacts and as tracers for marine processes. Here we present results from a study of the geochemistry of natural (234, 238U) and artificial (137Cs, 241Am, 238Pu, 239+240Pu, and 236U) radionuclides and their accumulation in sediments from Loch Etive, Scotland. The data are interpreted in the context of the historical radioactive discharges to the Irish Sea and biogeochemical processes in marine sediments. Loch Etive is divided into two basins; a lower, seaward basin where the sedimentation rate (∼0.6 cm/yr) is about twice that of the more isolated upper basin (∼0.3 cm/yr). These accumulation rates are consistent with the broad distribution of 137Cs in the sediment profiles which can be related to the maximum Sellafield discharges of 137Cs in the mid-1970s and suggest that 137Cs was mainly transported in solution to Loch Etive during that period. Enrichments of Mn, Fe, and Mo in sediment and porewater from both Loch Etive basins result from contemporary biogeochemical redox processes. Enrichments of 238U and 234U in the lower basin may be a result of the cycling of natural U. By contrast, the Sellafield-derived artificial isotope 236U does not seem to be affected by the redox-driven reactions in the lower basin. The 238Pu/239,240Pu ratios suggest contributions from both historical Sellafield discharges and global fallout Pu. The uniform sediment distributions of Pu and Am, which do not reflect Sellafield historical discharges, suggest the existence of a homogenous secondary source. This could be the offshore ‘mud patch’ in the vicinity of Sellafield from which the supply of radionuclides reflects time-integrated Sellafield discharges. This source could also account for the continuing supply of Cs to Loch Etive, even after substantial reductions in discharge from the Sellafield site.

AB - The nuclear fuel reprocessing plants on the Sellafield site (UK) have released low-level effluents into the Irish Sea under authorisation since 1952. This has led to the labelling of nearby offshore sediments with a range of artificial radionuclides. In turn, these sediments act as a long-term secondary source of both soluble and particle-associated radionuclides to coastal areas. These radionuclides are of interest both in assessing possible environmental impacts and as tracers for marine processes. Here we present results from a study of the geochemistry of natural (234, 238U) and artificial (137Cs, 241Am, 238Pu, 239+240Pu, and 236U) radionuclides and their accumulation in sediments from Loch Etive, Scotland. The data are interpreted in the context of the historical radioactive discharges to the Irish Sea and biogeochemical processes in marine sediments. Loch Etive is divided into two basins; a lower, seaward basin where the sedimentation rate (∼0.6 cm/yr) is about twice that of the more isolated upper basin (∼0.3 cm/yr). These accumulation rates are consistent with the broad distribution of 137Cs in the sediment profiles which can be related to the maximum Sellafield discharges of 137Cs in the mid-1970s and suggest that 137Cs was mainly transported in solution to Loch Etive during that period. Enrichments of Mn, Fe, and Mo in sediment and porewater from both Loch Etive basins result from contemporary biogeochemical redox processes. Enrichments of 238U and 234U in the lower basin may be a result of the cycling of natural U. By contrast, the Sellafield-derived artificial isotope 236U does not seem to be affected by the redox-driven reactions in the lower basin. The 238Pu/239,240Pu ratios suggest contributions from both historical Sellafield discharges and global fallout Pu. The uniform sediment distributions of Pu and Am, which do not reflect Sellafield historical discharges, suggest the existence of a homogenous secondary source. This could be the offshore ‘mud patch’ in the vicinity of Sellafield from which the supply of radionuclides reflects time-integrated Sellafield discharges. This source could also account for the continuing supply of Cs to Loch Etive, even after substantial reductions in discharge from the Sellafield site.

KW - Americium

KW - Uranium

KW - Plutonium

KW - Cesium

KW - Sellafield

U2 - 10.1016/j.jenvrad.2018.02.001

DO - 10.1016/j.jenvrad.2018.02.001

M3 - Article

JO - Journal of Environmental Radioactivity

JF - Journal of Environmental Radioactivity

SN - 0265-931X

ER -