Classification of states and model order reduction of large scale Chemical Vapor Deposition processes with solution multiplicity

Research output: Contribution to journalArticle

  • External authors:
  • E. D. Koronaki
  • P. A. Gkinis
  • L. Beex
  • S. P. A. Bordas
  • Boudouvis A. G.


This paper presents an equation-free, data-driven approach for reduced order modeling of a Chemical Vapor Deposition (CVD) process. The proposed approach is based on process information provided by detailed, high-fidelity models, but can also use spatio-temporal measurements. The Reduced Order Model (ROM) is built using the method-of-snapshots variant of the Proper Orthogonal Decomposition (POD) method and Artificial Neural Networks (ANN) for the identification of the time coefficients. The derivation of the model is completely equation-free as it circumvents the projection of the actual equations onto the POD basis. Prior to building the model, the Support Vector Machine (SVM) supervised classification algorithm is used in order to identify clusters of data corresponding to (physically) different states that may develop at the same operating conditions due to the inherent nonlinearity of the process. The different clusters are then used for ANN training and subsequent development of the ROM. The results indicate that the ROM is successful at predicting the dynamic behavior of the system in windows of operating parameters where steady states are not unique.

Bibliographical metadata

Original languageEnglish
Early online date25 Sep 2018
Publication statusPublished - 2 Feb 2019

Related information