Functional and genetic analysis of spectraplakins in Drosophila

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

The cytoskeleton is a dynamic network of filamentous protein polymers required for virtually all cellular processes. It consists of three major classes, filamentous actin (F-actin), intermediate filaments and microtubules, all displaying characteristic structural properties, functions, cellular distributions and sets of interacting regulatory proteins. One unique class of proteins, the spectraplakins, bind, regulate, and integrate the functions of all three classes of cytoskeleton proteins. Spectraplakins are giant, evolutionary conserved multidomain proteins (spanning up to 9000 aa) that are true members of the plakin, spectrin and Gas2-like protein families. They have OMIM-listed disease links to epidermolysis bullosa and hereditary sensory and autonomic neuropathy (HSAN). Their role in disease is likely underrepresented since studies in model animal systems have revealed critical roles in polarity, morphogenesis, differentiation and maintenance, migration, signalling and intracellular trafficking in a variety of tissues. This enormous diversity of spectraplakin function is consistent with the numerous isoforms produced from single genomic loci that combine different sets of functional domains in distinct cellular contexts. To study the broad range of functions and complexity of these proteins, Drosophila is a powerful model. Thus, the fly spectraplakin Short stop (Shot) acts as an actin-microtubule linker and plays important roles in many developmental processes, which provide experimentally amenable and relevant contexts in which to study spectraplakin functions. For these studies, a versatile range of relevant experimental resources that facilitate genetics and transgenic approaches, highly refined genomics tools, and an impressive set of spectraplakin-specific genetic and molecular tools is readily available. Here we use the example of Shot to illustrate how the various tools and strategies available for Drosophila can be employed to decipher and dissect cellular roles and molecular mechanisms of spectraplakins.

Bibliographical metadata

Original languageEnglish
Title of host publicationMethods in Enzymology
Subtitle of host publicationIntermediate Filament Associated Proteins
EditorsKatherine L. Wilson, Arnoud Sonnenberg
PublisherElsevier Inc.
Pages373-405
Number of pages35
Volume569
ISBN (Electronic)9780128034903
ISBN (Print)9780128034699
DOIs
StatePublished - 2016

Publication series

NameMethods in Enzymology
PublisherElsevier
Volume569
ISSN (Print)0076-6879