Assembling a plug-and-play production line for combinatorial biosynthesis of aromatic polyketides in Escherichia coli

Research output: Contribution to journalArticlepeer-review

  • External authors:
  • Matthew Cummings
  • Anna Peters
  • George Whitehead
  • Binuraj Menon


Polyketides are a class of specialised metabolites synthesised by both eukaryotes and prokaryotes. These chemically and structurally diverse molecules are heavily used in the clinic and include frontline antimicrobial and anticancer drugs such as erythromycin and doxorubicin. To replenish the clinicians’ diminishing arsenal of bioactive molecules, a promising strategy aims at transferring polyketide biosynthetic pathways from their native producers into the biotechnologically desirable host Escherichia coli. This approach has been successful for type I modular polyketide synthases; however, despite more than three decades of research, the large and important group of type II polyketide synthases has until now been elusive in E. coli. Here we report on a versatile polyketide biosynthesis pipeline, based on identification of E. coli-compatible type II polyketide synthases. We successfully express 5 ketosynthase (KS) and chain length factor pairs, e.g., from Photorhabdus luminescens TT01, Streptomyces resistomycificus, Streptoccocus sp. GMD2s, Pseudoalteromonas luteoviolacea, and Ktedonobacter racemifer as soluble heterodimeric recombinant proteins in E. coli for the first time. We define the anthraquinone minimal polyketide synthase components, and utilise this biosynthetic system to synthesise anthraquinones, dianthrones and benzoisochromanequinones (BIQs). Furthermore, we demonstrate the tolerance and promiscuity of the anthraquinone heterologous biosynthetic pathway in E. coli to act as genetically applicable plug-and-play scaffold, showing it to function successfully when combined with enzymes from phylogenetically distant species, endophytic fungi and plants, which resulted in two new-to-nature compounds, neomedicamycin and neochaetomycin. This work enables plug-and-play combinatorial biosynthesis of aromatic polyketides using bacterial type II polyketide synthases in E. coli, providing full access to its many advantages in terms of easy and fast genetic manipulation, accessibility for highthroughput robotics, and convenient biotechnological scale-up. Using the synthetic and systems biology toolbox, this plug-and-play biosynthetic platform can serve as an engine for the production of new and diversified bioactive polyketides in an automated, rapid and versatile fashion.

Bibliographical metadata

Original languageEnglish
JournalPL o S Biology
Early online date18 Jul 2019
Publication statusPublished - 2019

Related information