Are dendrites in Drosophila homologous to vertebrate dendrites?

Research output: Contribution to journalArticle

  • External authors:
  • Natalia Sanchez-Soriano
  • Wolfgang Bottenberg
  • André Fiala
  • Ulrike Haessler
  • Afroditi Kerassoviti
  • Elisabeth Knust
  • Robert Löhr

Abstract

Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed. © 2005 Elsevier Inc. All rights reserved.

Bibliographical metadata

Original languageEnglish
Pages (from-to)126-138
Number of pages12
JournalDevelopmental Biology
Volume288
Issue number1
DOIs
Publication statusPublished - 1 Dec 2005