An Adaptive Step Implicit Midpoint Rule for the Time Integration of Newton’s Linearisations of Non-Linear Problems with Applications in Micromagnetics

Research output: Contribution to journalArticlepeer-review


The implicit mid-point rule is a Runge–Kutta numerical integrator for the solution of initial value problems, which possesses important properties that are relevant in micromagnetic simulations based on the Landau–Lifshitz–Gilbert equation, because it conserves the magnetization length and accurately reproduces the energy balance (i.e. preserves the geometric properties of the solution). We present an adaptive step size version of the integrator by introducing a suitable local truncation error estimator in the context of a predictor-corrector scheme. We demonstrate on a number of relevant examples that the selected step sizes in the adaptive algorithm are comparable to the widely used adaptive second-order integrators, such as the backward differentiation formula (BDF2) and the trapezoidal rule. The proposed algorithm is suitable for a wider class of non-linear problems, which are linearised by Newton’s method and require the preservation of geometric properties in the numerical solution.

Bibliographical metadata

Original languageEnglish
JournalJournal of Scientific Computing
Early online date21 May 2019
Publication statusPublished - 21 May 2019

Related information


View all