ABBA: Adaptive Brownian bridge-based symbolic aggregation of time series

Research output: Contribution to journalArticle

Abstract

A new symbolic representation of time series, called ABBA, is introduced. It is based on an adaptive polygonal chain approximation of the time series into a sequence of tuples, followed by a mean-based clustering to obtain the symbolic representation. We show that the reconstruction error of this representation can be modelled as a random walk with pinned start and end points, a so-called Brownian bridge. This insight allows us to make ABBA essentially parameter-free, except for the approximation tolerance which must be chosen. Extensive comparisons with the SAX and 1d-SAX representations are included in the form of performance profiles, showing that ABBA is often able to better preserve the essential shape information of time series compared to other approaches, in particular when time warping measures are used. Advantages and applications of ABBA are discussed, including its in-built differencing property and use for anomaly detection, and Python implementations provided.

Bibliographical metadata

Original languageEnglish
JournalData Mining and Knowledge Discovery
Early online date3 Jun 2020
DOIs
Publication statusE-pub ahead of print - 3 Jun 2020

Related information

Researchers

View all