A three-stage genome-wide association study identifies a susceptibility locus for late radiotherapy toxicity at 2q24.1

Research output: Contribution to journalArticlepeer-review

  • External authors:
  • Laura Fachal
  • Antonio Gómez-Caamaño
  • Gillian C. Barnett
  • Paula Peleteiro
  • Ana M. Carballo
  • Patricia Calvo-Crespo
  • Sarah L. Kerns
  • Manuel Sánchez-García
  • Ramón Lobato-Busto
  • Leila Dorling
  • Rebecca M. Elliott
  • David P. Dearnaley
  • Matthew R. Sydes
  • Emma Hall
  • Neil G. Burnet
  • Ángel Carracedo
  • Barry S. Rosenstein
  • Alison M. Dunning
  • Ana Vega


There is increasing evidence supporting the role of genetic variants in the development of radiation-induced toxicity. However, previous candidate gene association studies failed to elucidate the common genetic variation underlying this phenotype, which could emerge years after the completion of treatment. We performed a genome-wide association study on a Spanish cohort of 741 individuals with prostate cancer treated with external beam radiotherapy (EBRT). The replication cohorts consisted of 633 cases from the UK4 and 368 cases from North America. One locus comprising TANC1 (lowest unadjusted P value for overall late toxicity = 6.85 × 10-9, odds ratio (OR) = 6.61, 95% confidence interval (CI) = 2.23-19.63) was replicated in the second stage (lowest unadjusted P value for overall late toxicity = 2.08 × 1 -4, OR = 6.17, 95% CI = 2.25-16.95; Pcombined= 4.16 × 10-10). The inclusion of the third cohort gave unadjusted Pcombined= 4.64 × 10-9. These results, together with the role of TANC1 in regenerating damaged muscle, suggest that the TANC1 locus influences the development of late radiation-induced damage. © 2014 Nature America, Inc.

Bibliographical metadata

Original languageEnglish
Pages (from-to)891-894
Number of pages3
JournalNature Genetics
Issue number8
Publication statusPublished - 29 Jun 2014

Related information


View all