Mass spectrometry detection of photodamage in human extracellular matrix assemblies

Dataset

Bibliographical metadata

Description

Photoageing in skin is commonly recognised by architectural remodelling of dermal extracellular matrix components. Mass spectrometry was previously used to identify tissue-specific patterns of fibrillin-1 and collagen VI peptide spectrum matches (PXD008450). This study aimed to determine if the same mass spectrometry-based approach could detect peptide spectrum match patterns and significantly differences in relative abundance of peptide sequences characteristic of damage following exposure to UVR of co-purified suspensions of fibrillin and collagen VI microfibrils. Human dermal fibroblast-derived suspensions of microfibrils were irradiated with either broadband UVB or solar simulated radiation (SSR). UVR-induced molecular damage was characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). This allowed the molecular scale identification of UV-induced structural changes within two skin matrix assemblies. The proteomic approaches used have the potential to facilitate the rapid, protein-specific identification of differential molecular fingerprints of damage in key extracellular matrix proteins
Date made available30 Jan 2020
PublisherPRoteomics IDEntifications Database
Date of data production23 Aug 2019

Related information

Publications

Research output: Contribution to journalArticle

View all (1)

Prizes

Prize: Prize (including medals and awards)

View all prizes ()